首页> 外文OA文献 >Neural Mechanisms Mediating the Effects of Food Cues and Acute Exercise: a functional Magnetic Resonance Imaging and Functional Connectivity Investigation
【2h】

Neural Mechanisms Mediating the Effects of Food Cues and Acute Exercise: a functional Magnetic Resonance Imaging and Functional Connectivity Investigation

机译:神经机制介导的食物提示和急性运动的影响:功能磁共振成像和功能连接性调查。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The obesity epidemic is imposing enormous costs on individuals and on developed and developing societies. Ultimately, obesity arises from a sustained imbalance in the energy balance equation from either excessive energy consumption or significantly reduced activity. Here we report on findings from two fRMI studies, each of which examines one side of the energy balance equation. In our first study, the Passive Viewing of Foods, we examined the effects of acute exercise on self-report measures of appetite suppression and on neural activity resulting when normal BMI subjects viewed blocks of high calorie or low calorie food cues. We found that acute exercise suppressed self-reported appetite and reduced the activation of two key brain areas relative to appetite regulation: the dorsal anterior cingulate (dorsal ACC), a frontal attention processing area, and the nucleus accumbens, a central reward processing area. Moreover, we conducted functional connectivity analysis to examine other areas of the brain that were positively or negatively correlated with these two areas when viewing high calorie food cues following exercise. The functional network identified was broadly distributed and included increased coupling with the putamen, insula, operculae, inferior frontal gyrus, and superior parietal lobule and decreased coupling with the amygdala and orbital frontal cortex, among other areas. We believe this is the first study of exercise induced appetite suppression that used whole brain analysis and functional connectivity to show both absolute reductions of activity in the dorsal ACC and nucleus accumbens as well as a distributed functional network with differential coupling and de-coupling. These findings help identify a functional network that mediates appetite suppression as a result of acute exercise. In our second study, the Categorical Food Stroop, we deploy a novel Stroop-like paradigm that used the same high and low calorie food cue exemplars to examine the effects of the food cues on cognitive interference and the cognitive control effect of conflict adaptation. In the study, subjects categorized the high and low calorie food cue word targets, which were overlain on veridical images of the same food cue exemplars. Relative to interference, we observed that normal BMI subjects took 18 ms longer to categorize high calorie words overlain on low calorie images (high calorie incongruent trial) than they did to categorize low calorie words on high calorie distractors (low calorie incongruent trial). Relative to conflict adaptation, a measure of cognitive control over response inhibition when there are conflicting response options, we observed a significant overall effect of conflict adaptation but then showed that only one calorie characteristic (high calorie incongruent trials following high calorie incongruent trials, HH trials) was significantly contributing to the overall conflict adaptation. To our knowledge, this was the first categorical food Stroop and the first study to identify the role of caloric characteristic in modulating cognitive control relative to response selection in food-related decisions. Our neural observations showed that the increased interference in incongruent trials is associated with activation in the supramarginal gyrus, superior parietal lobule and the superior lateral occipital cortex. The high cognitive control HH trials compared to the low cognitive control trials activated the parahippocampal gyrus, the right amygdala, the orbital frontal cortex, the superior parietal lobule, the angular gyrus, and temporal-occipital gyrus. The parahippocampal gyrus and superior parietal lobule were used as seeds in functional connectivity analysis and revealed a high degree of overlap in their distributed functional networks mediating high cognitive control trials. The findings shed new light on both the high calorie stimulus specificity of cognitive control in normal subjects and the distributed functional network that mediates the effects of the cognitive control in food related decisions.
机译:肥胖病的流行给个人以及发达和发展中的社会带来了巨大的代价。最终,肥胖归因于能量平衡方程中持续的不平衡,原因是能量消耗过多或活动明显减少。在这里,我们报告了两项fRMI研究的发现,每个研究都考察了能量平衡方程的一侧。在我们的第一个研究中,“被动观察食物”研究了正常运动BMI受试者观察到高卡路里或低卡路里食物线索时,急性运动对食欲自我报告和神经活动的影响。我们发现,急性运动抑制了自我报告的食欲,并减少了两个与食欲调节有关的关键大脑区域的激活:背侧扣带回(背侧ACC)(一个前额注意处理区域)和伏隔核(一个中央奖励处理区域)。此外,我们进行了功能连通性分析,以检查运动后查看高卡路里食物提示时与这两个区域正相关或负相关的其他大脑区域。所识别的功能网络分布广泛,包括与壳核,岛突,盖,额额下回和顶叶小叶的耦合增加,以及与杏仁核和眶额叶皮层的耦合减少,以及其他区域。我们认为这是第一项关于运动诱发的食欲抑制的研究,该研究利用全脑分析和功能连通性显示了背侧ACC和伏伏核的绝对活动降低以及具有差分耦合和去耦合的分布式功能网络。这些发现有助于确定一个功能网络,该网络介导急性运动导致的食欲抑制。在我们的第二项研究(分类食物Stroop)中,我们部署了一种新颖的类似Stroop的范例,该范例使用相同的高热量和低热量食物提示示例来检查食物提示对认知干扰的影响以及冲突适应的认知控制效果。在研究中,受试者对高卡路里和低卡路里食物提示词目标进行了分类,这些目标被覆盖在相同食物提示示例的垂直图像上。相对于干扰,我们观察到正常BMI受试者将低卡路里图像上重叠的高卡路里单词分类的时间(高卡路里不一致试验)要比高卡路里干扰物上的低卡路里单词的分类(低卡路里不一致试验)花费18 ms的时间。相对于冲突适应(一种在反应选项冲突时对反应抑制的认知控制的量度),我们观察到了冲突适应的显着整体效果,但随后发现只有一种卡路里特征(高卡路里不一致试验,HH试验之后的高卡路里不一致试验) )为整体冲突适应做出了重要贡献。据我们所知,这是第一个分类食品Stroop,也是第一个确定热量特征在调节与食物相关决策中的反应选择相关的认知控制中的作用的研究。我们的神经观察结果表明,不一致试验中干扰的增加与上颌回,顶上小叶和枕后外侧皮层的激活有关。与低认知控制试验相比,高认知控制试验激活了海马旁回,右杏仁核,眶额叶皮层,顶叶小叶,角回和颞枕回。海马旁回和顶叶小叶被用作功能连接性分析的种子,并揭示了它们的分布式功能网络在高度认知控制试验中的高度重叠。这些发现为正常人的认知控制的高卡路里刺激特异性以及在食品相关决策中介导认知控制作用的分布式功能网络提供了新的思路。

著录项

  • 作者

    Hinkle William;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号