首页> 外文OA文献 >Spectrogram: A Mixture-of-Markov-Chains Model for Anomaly Detection in Web Traffic
【2h】

Spectrogram: A Mixture-of-Markov-Chains Model for Anomaly Detection in Web Traffic

机译:频谱图:马尔可夫链混合模型,用于网络流量中的异常检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present Spectrogram, a machine learning based statistical anomaly detection (AD) sensor for defense against web-layer code-injection attacks. These attacks include PHP file inclusion, SQL-injection and cross-site-scripting; memory-layer exploits such as buffer overflows are addressed as well. Statistical AD sensors offer the advantage of being driven by the data that is being protected and not by malcode samples captured in the wild. While models using higher order statistics can often improve accuracy, trade-offs with false-positive rates and model efficiency remain a limiting usability factor. This paper presents a new model and sensor framework that offers a favorable balance under this constraint and demonstrates improvement over some existing approaches. Spectrogram is a network situated sensor that dynamically assembles packets to reconstruct content flows and learns to recognize legitimate web-layer script input. We describe an efficient model for this task in the form of a mixture of Markovchains and derive the corresponding training algorithm. Our evaluations show significant detection results on an array of real world web layer attacks, comparing favorably against other AD approaches.
机译:我们提出了Spectrogram,这是一种基于机器学习的统计异常检测(AD)传感器,用于防御Web层代码注入攻击。这些攻击包括PHP文件包含,SQL注入和跨站点脚本编写。还解决了内存层漏洞,例如缓冲区溢出。统计型AD传感器具有受保护数据驱动的优势,而不受野外捕获的错误代码样本驱动。尽管使用高阶统计量的模型通常可以提高准确性,但在误报率和模型效率之间进行权衡仍然是限制可用性的因素。本文提出了一种新的模型和传感器框架,该模型和传感器框架在此约束下提供了良好的平衡,并展示了对某些现有方法的改进。频谱图是一种位于网络中的传感器,可以动态地组装数据包以重建内容流,并学会识别合法的Web层脚本输入。我们以混合马尔可夫链的形式描述了此任务的有效模型,并推导了相应的训练算法。我们的评估显示,在一系列实际的Web层攻击中,检测结果显着,与其他AD方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号