首页> 外文期刊>Expert Systems with Application >Web traffic anomaly detection using C-LSTM neural networks
【24h】

Web traffic anomaly detection using C-LSTM neural networks

机译:使用C-LSTM神经网络的Web流量异常检测

获取原文
获取原文并翻译 | 示例

摘要

Web traffic refers to the amount of data that is sent and received by people visiting online websites. Web traffic anomalies represent abnormal changes in time series traffic, and it is important to perform detection quickly and accurately for the efficient operation of complex computer networks systems. In this paper, we propose a C-LSTM neural network for effectively modeling the spatial and temporal information contained in traffic data, which is a one-dimensional time series signal. We also provide a method for automatically extracting robust features of spatial-temporal information from raw data. Experiments demonstrate that our C-LSTM method can extract more complex features by combining a convolutional neural network (CNN), long short-term memory (LSTM), and deep neural network (DNN). The CNN layer is used to reduce the frequency variation in spatial information; the LSTM layer is suitable for modeling time information; and the DNN layer is used to map data into a more separable space. Our C-LSTM method also achieves nearly perfect anomaly detection performance for web traffic data, even for very similar signals that were previously considered to be very difficult to classify. Finally, the C-LSTM method outperforms other state-of-the-art machine learning techniques on Yahoo's well-known Webscope S5 dataset, achieving an overall accuracy of 98.6% and recall of 89.7% on the test dataset. (C) 2018 Elsevier Ltd. All rights reserved.
机译:Web流量是指访问在线网站的人发送和接收的数据量。 Web流量异常表示时间序列流量的异常变化,对于快速有效地执行检测对于复杂计算机网络系统的有效运行很重要。在本文中,我们提出了一种C-LSTM神经网络,用于有效地建模交通数据中包含的时空信息,这是一维时间序列信号。我们还提供了一种从原始数据中自动提取时空信息的鲁棒特征的方法。实验表明,我们的C-LSTM方法可以通过结合卷积神经网络(CNN),长短期记忆(LSTM)和深度神经网络(DNN)来提取更复杂的特征。 CNN层用于减少空间信息中的频率变化; LSTM层适合于建模时间信息; DNN层用于将数据映射到更可分离的空间。我们的C-LSTM方法还可以针对Web流量数据实现近乎完美的异常检测性能,即使对于以前认为很难分类的非常相似的信号也是如此。最后,在Yahoo著名的Webscope S5数据集上,C-LSTM方法优于其他最新的机器学习技术,在测试数据集上实现了98.6%的总体准确率和89.7%的查全率。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号