首页> 外文OA文献 >Defect Mediated Sub-Bandgap Optical Absorption in Ion-Implanted Silicon Nano-Wire Waveguide Photodetectors
【2h】

Defect Mediated Sub-Bandgap Optical Absorption in Ion-Implanted Silicon Nano-Wire Waveguide Photodetectors

机译:离子注入的硅纳米线波导光电探测器中的缺陷介导的亚带隙光学吸收。

摘要

Silicon has numerous benefits as a photonic integrated circuit platform, including optical transparency from 1.1 µm to greater than 5 µm, tight optical confinement due to its high index of refraction, high third order non-linearity, and lack of two photon absorption at wavelengths above 2.2 µm. Additionally, silicon photonics has the added benefit of decades of fabrication knowledge from the CMOS industry. Despite these advantages, an enormous challenge exists in two areas, optical sources for silicon photonic integrated circuits, and on the other end, optical detectors for silicon photonic integrated circuits. The same bandgap energy that leads to the optical transparency at telecom and mid-infrared wavelengths, limits both generation and detection in this same regime. This dissertation focuses on the detection problem, exploring the use of defect-mediated sub-bandgap optical absorption in ion-implanted silicon nano-wire waveguides. Section I of this dissertation focuses on fabrication and the ion-implantation process, including a primer on Shockley-Read-Hall theory and its application to defect-mediated sub-bandgap optical absorption. Section II examines the devices for use at telecom wavelengths. In Chapter 4, the fabrication and characterization of metal-semiconductor-metal ion-implanted silicon nano-wire waveguide photodiodes is examined. These devices require minimal fabrication, are compatible with standard CMOS fabrication processes, and exhibited responsivities as high as 0.51 A/W and frequency responses greater than 2.6 GHz. With improved fabrication tolerances, frequency responses of greater than 10 GHz are expected. Chapter 5 examined these ion-implanted photodiodes in a p-i-n configuration as a high speed data interconnect, demonstrating error free operation at 10 Gbs with expected sensitivities approaching that of Ge detectors. Section III extends the above research to longer wavelengths, starting with data reception at 1.9 µm in Chapter 6, exhibiting an approximate 5 dB penalty in sensitivity compared to the same diodes at 1.55 µm, at a data rate of 1 Gbs, limited by RC due to the 2 mm length of the device. Chapter 7 goes even further, characterizing Si+ implanted silicon nano-wire waveguides for operation between 2.2 µm and 2.35 µm. These devices showed responsivities as high as 9.9 mA/W, with internal quantum efficiencies approaching 5%. Chapter 8 concludes with the characterization of Zn+ implanted silicon nano-wire waveguides operating in the same wavelength regime, exhibiting higher overall responsivity, albeit at a much higher reverse bias. These long wavelength devices open up new areas of research for silicon photonics, allowing for CMOS compatible detectors operating into the mid-infrared region, useful for chemical sensing, free-space communications, and medical imaging.
机译:硅具有作为光子集成电路平台的众多优势,包括从1.1 µm到大于5 µm的光学透明性,由于其高折射率,高三阶非线性和在以上波长下缺少两个光子吸收而导致的严格光学限制。 2.2微米。此外,硅光子学还具有CMOS行业数十年的制造知识。尽管具有这些优点,但是在两个领域中仍然存在巨大的挑战,硅光子集成电路的光源,另一方面,硅光子集成电路的光学检测器。导致电信和中红外波长处的光学透明的相同带隙能量限制了在同一情况下的生成和检测。本文重点研究了检测问题,探讨了离子介导的亚带隙光吸收技术在离子注入硅纳米线波导中的应用。本论文的第一节着重于制造和离子注入过程,包括Shockley-Read-Hall理论的入门知识及其在缺陷介导的亚带隙光吸收中的应用。第二部分检查了在电信波长下使用的设备。在第四章中,研究了金属-半导体-金属离子注入的硅纳米线波导光电二极管的制造与表征。这些设备需要最少的制造,与标准CMOS制造工艺兼容,并具有高达0.51 A / W的响应度和大于2.6 GHz的频率响应。随着制造公差的提高,预期频率响应将超过10 GHz。第5章以p-i-n配置将这些离子注入光电二极管作为高速数据互连进行了检查,展示了在10 Gbs的无错误操作,预期灵敏度接近Ge检测器。第三节将上述研究扩展到更长的波长,从第6章中的1.9 µm的数据接收开始,与相同二极管的1.55 µm相比,在1 Gbs的数据速率下,其灵敏度大约降低了5 dB,受RC限制。到设备2毫米的长度。第7章进一步介绍了工作在2.2 µm至2.35 µm之间的Si +注入的硅纳米线波导的特性。这些设备显示出高达9.9 mA / W的响应度,内部量子效率接近5%。第8章总结了在相同波长范围内工作的Zn +注入硅纳米线波导的特性,尽管具有更高的反向偏置,但仍表现出更高的总体响应度。这些长波长器件为硅光子学开辟了新的研究领域,使CMOS兼容探测器可在中红外范围内工作,可用于化学传感,自由空间通信和医学成像。

著录项

  • 作者

    Souhan Brian;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号