首页> 外文OA文献 >Stochastic Approximation Algorithms in the Estimation of Quasi-Stationary Distribution of Finite and General State Space Markov Chains
【2h】

Stochastic Approximation Algorithms in the Estimation of Quasi-Stationary Distribution of Finite and General State Space Markov Chains

机译:有限和一般状态空间马尔可夫链拟平稳分布估计中的随机逼近算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis studies stochastic approximation algorithms for estimating the quasi-stationary distribution of Markov chains. Existing numerical linear algebra methods and probabilistic methods might be computationally demanding and intractable in large state spaces. We take our motivation from a heuristic described in the physics literature and use the stochastic approximation framework to analyze and extend it. The thesis begins by looking at the finite dimensional setting. The finite dimensional quasi-stationary estimation algorithm was proposed in the Physics literature by [#latestoliveira, #oliveiradickman1, #dickman], however no proof was given there and it was not recognized as a stochastic approximation algorithm. This and related schemes were analyzed in the context of urn problems and the consistency of the estimator is shown there [#aldous1988two, #pemantle, #athreya]. The rate of convergence is studied by [#athreya] in special cases only. The first chapter provides a different proof of the algorithm's consistency and establishes a rate of convergence in more generality than [#athreya]. It is discovered that the rate of convergence is only fast when a certain restrictive eigenvalue condition is satisfied. Using the tool of iterate averaging, the algorithm can be modified and we can eliminate the eigenvalue condition. The thesis then moves onto the general state space discrete-time Markov chain setting. In this setting, the stochastic approximation framework does not have a strong theory in the current literature, so several of the convergence results have to be adapted because the iterates of our algorithm are measure-valued The chapter formulates the quasi-stationary estimation algorithm in this setting. Then, we extend the ODE method of [#kushner2003stochastic] and proves the consistency of algorithm. Through the proof, several non-restrictive conditions required for convergence of the algorithm are discovered. Finally, the thesis tests the algorithm by running some numerical experiments. The examples are designed to test the algorithm in various edge cases. The algorithm is also empirically compared against the Fleming-Viot method.
机译:本文研究了随机近似算法,用于估计马尔可夫链的准平稳分布。现有的数值线性代数方法和概率方法在大状态空间中可能对计算有要求并且难以处理。我们从物理学文献中描述的启发式方法中获取动力,并使用随机近似框架对其进行分析和扩展。本文从研究有限维设置开始。 [#latestoliveira,#oliveiradickman1,#dickman]在物理学文献中提出了有限维拟平稳估计算法,但是那里没有给出证明,也没有被认为是随机近似算法。在骨灰盒问题的背景下分析了该方案和相关方案,并在此处显示了估计量的一致性[#aldous1988two,#pemantle,#athreya]。 [#athreya]仅在特殊情况下研究收敛速度。第一章提供了算法一致性的另一种证明,并建立了比[#athreya]更普遍的收敛速度。发现只有满足一定的特征值条件时,收敛速度才快。使用迭代平均工具,可以修改算法,并消除特征值条件。然后,论文转向一般状态空间离散时间马尔可夫链设置。在这种情况下,随机逼近框架在当前文献中没有强大的理论,因此必须对几种收敛结果进行调整,因为我们的算法的迭代值是度量值。本章在此制定了拟平稳估计算法。设置。然后,扩展了[#kushner2003stochastic]的ODE方法,证明了算法的一致性。通过证明,发现了算法收敛所需的几个非限制性条件。最后,本文通过一些数值实验对算法进行了测试。这些示例旨在在各种极端情况下测试该算法。还将该算法与Fleming-Viot方法进行了经验比较。

著录项

  • 作者

    Zheng Shuheng;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号