首页> 外文OA文献 >Improving Efficiency and Reliability of Building Systems Using Machine Learning and Automated Online Evaluation
【2h】

Improving Efficiency and Reliability of Building Systems Using Machine Learning and Automated Online Evaluation

机译:使用机器学习和自动在线评估提高建筑系统的效率和可靠性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A high percentage of newly-constructed commercial office buildings experience energy consumption that exceeds specifications and system failures after being put into use. This problem is even worse for older buildings. We present a new approach, 'predictive building energy optimization', which uses machine learning (ML) and automated online evaluation of historical and real-time building data to improve efficiency and reliability of building operations without requiring large amounts of additional capital investment. Our ML approach uses a predictive model to generate accurate energy demand forecasts and automated analyses that can guide optimization of building operations. In parallel, an automated online evaluation system monitors efficiency at multiple stages in the system workflow and provides building operators with continuous feedback. We implemented a prototype of this application in a large commercial building in Manhattan. Our predictive machine learning model applies Support Vector Regression (SVR) to the building's historical energy use and temperature and wet-bulb humidity data from the building's interior and exterior in order to model performance for each day. This predictive model closely approximates actual energy usage values, with some seasonal and occupant-specific variability, and the dependence of the data on day-of-the-week makes the model easily applicable to different types of buildings with minimal adjustment. In parallel, an automated online evaluator monitors the building's internal and external conditions, control actions and the results of those actions. Intelligent real-time data quality analysis components quickly detect anomalies and automatically transmit feedback to building management, who can then take necessary preventive or corrective actions. Our experiments show that this evaluator is responsive and effective in further ensuring reliable and energyefficient operation of building systems.
机译:新建的商业办公楼中有很大一部分在投入使用后,其能耗超过了规格和系统故障。对于较旧的建筑物,这个问题更加严重。我们提出了一种新的方法,即“预测建筑能耗优化”,该方法使用机器学习(ML)以及对历史和实时建筑数据的自动在线评估来提高建筑运营的效率和可靠性,而无需大量的额外资本投资。我们的机器学习方法使用预测模型来生成准确的能源需求预测和自动化分析,以指导建筑运营的优化。同时,一个自动化的在线评估系统在系统工作流程的多个阶段监控效率,并向建筑运营商提供持续的反馈。我们在曼哈顿的一座大型商业建筑中实现了此应用程序的原型。我们的预测性机器学习模型将支持向量回归(SVR)应用于建筑物的历史能源使用以及建筑物内部和外部的温度和湿球湿度数据,以便为每天的性能建模。这种预测模型非常接近实际的能源使用值,并且具有季节性和特定于乘员的可变性,并且数据对周日的依赖性使得该模型可以轻松地应用于最少类型的建筑物。同时,一个自动的在线评估器监视建筑物的内部和外部条件,控制措施以及这些措施的结果。智能实时数据质量分析组件可快速检测异常并将反馈自动传输到建筑物管理人员,然后他们可以采取必要的预防或纠正措施。我们的实验表明,该评估器在进一步确保建筑系统的可靠和节能运行方面反应灵敏且有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号