首页> 外文OA文献 >Recognition of micro-array protein crystals images using multi-scale representations
【2h】

Recognition of micro-array protein crystals images using multi-scale representations

机译:使用多尺度表示法识别微阵列蛋白晶体图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Micro-array protein crystal images are now routinely acquired automatically by CCD cameras. High-throughput automatic classification of protein crystals requires to alleviation of the time-consuming task of manual visual inspection. We propose a classification framework combined with a multi-scale image processing method for recognizing protein crystals and precipitates versus clear drops. The main two points of the processing method are the multi-scale Laplacian pyramid filters and histogram analysis techniques to find an effective feature vector. The processing steps include: 1. Tray well cropping using Radon Transform; 2. Droplet cropping using an ellipsoid Hough Transform; 3. Multi-scale image separation with Laplacian pyramidal filters; 4. Feature vector extraction from the histogram of the multi-scale boundary images. The feature vector combines geometric and texture features of each image and provides input to a feed forward binomial neural network classifier. Using human (expert crystallographers) classified images as ground truth, the current experimental results gave 86% true positive and 94% true negative rates (average true percentage is 90%) using an image database which contained over 2,000 images. To enable NESG collaborators to carry our crystal classification, a web-based Matlab server was also developed. Users at other locations on the internet can input micro-array crystal image folders and parameters for training and testing processes through a friendly web interface. Recognition results are shown on the client side website and may be downloaded by a remote user as an Excel spreadsheet file.
机译:现在,通常由CCD摄像机自动获取微阵列蛋白质晶体图像。蛋白质晶体的高通量自动分类需要减轻手动目视检查的耗时任务。我们提出了一种分类框架,结合了多尺度图像处理方法来识别蛋白质晶体和沉淀物与透明液滴。处理方法的主要两点是多尺度拉普拉斯金字塔过滤器和直方图分析技术以找到有效的特征向量。处理步骤包括:1.使用Radon Transform进行托盘井种植; 2.使用椭球霍夫变换进行液滴裁剪; 3.使用拉普拉斯金字塔滤镜进行多尺度图像分离; 4.从多尺度边界图像的直方图中提取特征向量。特征向量结合了每个图像的几何和纹理特征,并为前馈二项式神经网络分类器提供输入。使用人类(专家晶体学家)将图像分类为地面真实情况,当前的实验结果使用包含2,000幅图像的图像数据库给出了86%的真实阳性率和94%的真实阴性率(平均真实百分比为90%)。为了使NESG合作者能够进行我们的晶体分类,还开发了基于Web的Matlab服务器。互联网上其他位置的用户可以通过友好的Web界面输入微阵列晶体图像文件夹和参数,以进行培训和测试过程。识别结果显示在客户端网站上,并且可以由远程用户作为Excel电子表格文件下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号