首页> 外文OA文献 >Quantum Algorithms and Complexity for Certain Continuous and Related Discrete Problems
【2h】

Quantum Algorithms and Complexity for Certain Continuous and Related Discrete Problems

机译:某些连续和相关离散问题的量子算法和复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis contains an analysis of two computational problems. The first problem is discrete quantum Boolean summation. This problem is a building block of quantum algorithms for many continuous problems, such as integration, approximation, differential equations and path integration. The second problem is continuous multivariate Feynman-Kac path integration, which is a special case of path integration. The quantum Boolean summation problem can be solved by the quantum summation (QS) algorithm of Brassard, HíŸyer, Mosca and Tapp, which approximates the arithmetic mean of a Boolean function. We improve the error bound of Brassard et al. for the worst-probabilistic setting. Our error bound is sharp. We also present new sharp error bounds in the average-probabilistic and worst-average settings. Our average-probabilistic error bounds prove the optimality of the QS algorithm for a certain choice of its parameters. The study of the worst-average error shows that the QS algorithm is not optimal in this setting; we need to use a certain number of repetitions to regain its optimality. The multivariate Feynman-Kac path integration problem for smooth multivariate functions suffers from the provable curse of dimensionality in the worst-case deterministic setting, i.e., the minimal number of function evaluations needed to compute an approximation depends exponentially on the number of variables. We show that in both the randomized and quantum settings the curse of dimensionality is vanquished, i.e., the minimal number of function evaluations and/or quantum queries required to compute an approximation depends only polynomially on the reciprocal of the desired accuracy and has a bound independent of the number of variables. The exponents of these polynomials are 2 in the randomized setting and 1 in the quantum setting. These exponents can be lowered at the expense of the dependence on the number of variables. Hence, the quantum setting yields exponential speedup over the worst-case deterministic setting, and quadratic speedup over the randomized setting.
机译:本文对两个计算问题进行了分析。第一个问题是离散量子布尔求和。这个问题是解决许多连续问题(例如积分,逼近,微分方程和路径积分)的量子算法的基础。第二个问题是连续多元Feynman-Kac路径积分,这是路径积分的特例。可以通过Brassard,Híyer,Mosca和Tapp的量子求和(QS)算法来解决量子布尔求和问题,该算法可以近似布尔函数的算术平均值。我们提高了Brassard等人的误差范围。对于最差的概率设置。我们的错误范围很明显。我们还在平均概率和最差平均设置中提出了新的尖锐误差界限。我们的平均概率误差范围证明了QS算法在参数选择上的最优性。对最差平均误差的研究表明,在这种情况下,QS算法不是最佳算法。我们需要使用一定的重复次数来恢复其最佳状态。用于平滑多元函数的多元Feynman-Kac路径积分问题在最坏情况下的确定性设置中遭受可维数的可诅咒,即计算近似值所需的最小函数评估次数成倍地取决于变量的数量。我们表明,在随机和量子设置中,维数的诅咒都被克服了,即,计算近似值所需的函数求值和/或量子查询的最小数量仅在多项式上取决于所需精度的倒数,并且具有独立的范围变量数。这些多项式的指数在随机设置中为2,在量子设置中为1。这些指数可以降低,但要以对变量数量的依赖性为代价。因此,量子设置在最坏情况的确定性设置下产生指数加速,而在随机设置下产生二次加速。

著录项

  • 作者

    Kwas Marek;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号