首页> 外文OA文献 >Optimal Real-Time Scheduling Algorithm for Fixed-Priority Energy-Harvesting Systems
【2h】

Optimal Real-Time Scheduling Algorithm for Fixed-Priority Energy-Harvesting Systems

机译:固定优先级能量收集系统的最优实时调度算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a precedent work we saw that finding efficient scheduling algorithms for fixed-priority energy-harvesting systems is one of the challenges of this research area. We presented PFPasap which is an optimal scheduling algorithm. Moreover, the optimality of this algorithm relies on two main assumptions: the considered task sets are energy-non-concrete, and all the tasks consume more energy than it is replenished. Unfortunately, removing one of these two assumptions leads PFPasap to lose its optimality. This is due to the fact that without these assumptions, the worst-case scenario of PFPasap is no longer the synchronous activation with the minimum battery capacity. Moreover, without these assumptions, the worst-case scenario is unknown up to now. There exist some counter examples that prove the non-optimality of PFPasap.The challenge now is to understand why does PFPasap lose its optimality and we try to study deeply the fixed-priority scheduling for energy-harvesting systems by trying to build an optimal algorithm or otherwise to prove the nonexistence of such an algorithm.In this work, we explore different intuitive ideas of scheduling algorithms and we explain why they are not optimal through counter examples. Then, we show the difficulty of finding an optimal algorithm or proving the nonexistence of such an algorithm with a reasonable complexity.
机译:在先前的工作中,我们看到为固定优先级的能量收集系统找到有效的调度算法是该研究领域的挑战之一。我们提出了PFPasap,这是一种最佳调度算法。此外,该算法的最优性取决于两个主要假设:所考虑的任务集是非能量的,并且所有任务消耗的能量多于其补充的能量。不幸的是,删除这两个假设之一会导致PFPasap失去其最优性。这是由于以下事实:如果没有这些假设,PFPasap的最坏情况将不再是具有最小电池容量的同步激活。此外,如果没有这些假设,最坏的情况到现在还是未知的。有一些反例证明了PFPasap的非最优性。现在的挑战是了解为什么PFPasap失去了最优性,我们试图通过构建最优算法来深入研究能量收集系统的固定优先级调度。在本文中,我们探索了调度算法的不同直观思想,并通过反例解释了为什么它们不是最优的。然后,我们展示了找到最佳算法或以合理的复杂度证明这种算法不存在的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号