首页> 外文OA文献 >Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
【2h】

Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

机译:由涡度协方差,卫星和气象观测得出的二氧化碳,潜热和显热在陆地-大气通量的全球格局

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes tothe global scale using the machine learning technique, model tree ensembles (MTE). Wetrained MTE to predict site‐level gross primary productivity (GPP), terrestrialecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), andsensible heat (H) based on remote sensing indices, climate and meteorological data, andinformation on land use. We applied the trained MTEs to generate global flux fields at a0.5° × 0.5° spatial resolution and a monthly temporal resolution from 1982 to 2008.Cross‐validation analyses revealed good performance of MTE in predicting among‐siteflux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE(MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthlyanomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting ofdisturbance and lagged environmental effects, along with improved characterization oferrors in the training data set, would contribute most to further reducing uncertainties. Ourglobal estimates of LE (158 ± 7 J × 1018 yr−1), H (164 ± 15 J × 1018 yr−1), and GPP(119 ± 6 Pg C yr−1) were similar to independent estimates. Our global TER estimate (96 ±6 Pg C yr−1) was likely underestimated by 5–10%. Hot spot regions of interannualvariability in carbon fluxes occurred in semiarid to semihumid regions and were controlledby moisture supply. Overall, GPP was more important to interannual variability in NEEthan TER. Our empirically derived fluxes may be used for calibration and evaluation of landsurface process models and for exploratory and diagnostic assessments of the biosphere.
机译:我们使用机器学习技术,模型树集成(MTE)将FLUXNET对二氧化碳,水和能量通量的观测值扩大到了全球范围。我们对MTE进行了培训,以根据遥感指数,气候和气象数据以及信息来预测站点一级的总初级生产力(GPP),陆地生态系统呼吸(TER),净生态系统交换(NEE),潜能(LE)和显热(H)在土地上我们使用训练有素的MTE在1982年至2008年之间以0.5°×0.5°的空间分辨率和每月的时间分辨率生成全局通量场。交叉验证分析显示MTE在预测建模效率之间的通量变异性方面具有良好的性能(MEf )介于0.64和0.84之间,但NEE(MEf = 0.32)除外。该性能还可以很好地预测季节性模式(MEf在0.84至0.89之间,但NEE(0.64)除外)。相比之下,对月度异常的预测并不那么强(MEf在0.29至0.52之间)。改进对干扰和滞后环境影响的解释,以及改进训练数据集中的错误特征,将为进一步减少不确定性做出最大贡献。我们对LE(158±7 J×1018 yr-1),H(164±15 J×1018 yr-1)和GPP(119±6 Pg C yr-1)的整体估计与独立估计相似。我们对全球TER的估计值(96±6 Pg C yr-1)可能被低估了5-10%。碳通量年际变化的热点区域发生在半干旱至半湿润地区,并受水分供应的控制。总体而言,GPP对NEE中的年际变化比TER更重要。我们凭经验得出的通量可用于校准和评估地表过程模型以及对生物圈进行探索性和诊断性评估。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号