首页> 外文OA文献 >The Use of Solubility Parameters to Select Membrane Materials for Pervaporation of Organic Mixtures
【2h】

The Use of Solubility Parameters to Select Membrane Materials for Pervaporation of Organic Mixtures

机译:使用溶解度参数选择用于有机混合物全蒸发的膜材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pevaporation is a method for separating volatile components from liquid mixtures at ambient temperatures. The paint processing industry uses Hansen solubility parameters (HSP) to indicate polymer solubility. The potential of this method to predict solvent-polymer affinity was investigated for screening potential membrane materials for the pervaporation of a model solution containing linalool and linalyl acetate (major components of lavender essential oil), in ethanol. Published HSP values were collated for various polymers, and statistically analysed to determine variations in HSP values for polymer species. An investigation of published research into pervaporation of organic/organic binary solutions separated by homogeneous membranes indicated that the solvent whose HSP value was closest to that of the polymer would preferentially permeate. This relationship did not always hold for halogenated solvents or aqueous/organic solutions. Conflicting literature regarding the relationship between solvent uptake by polymers and HSP relative energy differences was resolved using a logarithmic relationship between these two parameters. The following membranes were selected, using their HSP to indicate their potential to interact with lavender oil components: Polyamide (PA: 26.9 micro;m), Polycarbonate (PC: 20.5 micro;m), Poly(ether imide) (PEI: 29.2 micro;m), Poly(ether sulphone) (PES: 27.6 micro;m), Polyethylene (HDPE: 10 micro;m, LDPE: 13-30 micro;m), Polyimide (PI: 30.0 micro;m), Poly(methyl methacrylate) (PMMA: 50 micro;m), Polypropylene (PP: 15.9 micro;m), and Poly(tetrafluoro ethylene) (PTFE: 26.7 micro;m). The HSP (dispersive, polar hydrogen bonding components) for each membrane were calculated using the mean value obtained from swelling experiments, group contribution (calculated using Hoftyzer-Van Krevelen, Hoy and Beerbower methods), refractive indices (dispersive component), dielectric constants (polar component), and published HSP values. Pervaporation experiments investigated the effect of membrane thickness, process temperature, permeate pressure, impinging jet heights, feed flow rates and concentrations, and pre-soaking the membrane; on flow rate and selectivity in a polyethylene membrane. Membrane thickness was the dominant factor in membrane selectivity; the thinnest membranes (11.3-14.8 micro;m) had much poorer selectivity than membranes 24.7 micro;m. Temperatures between 22-34ordm;C, permeate pressure 10 kPa, impinging jet heights between 0.36-3.36 mm, feed flow rates between 541-1328 mL/min and concentrations between 1.78-6.01 % v/v of linalool and linalyl acetate in ethanol did not significantly affect selectivity. Flow rates increased with operating temperature, permeate pressure, and impinging jet heights. However, feed flow rate and concentration had no effect on membrane flux rate. Pre-soaking the membrane reduced the time to reach steady-state. Selected membranes were further investigated under standard operating conditions (permeate temperature 30ordm;C, permeate pressure 10 kPa, impinging jet height 1.36 mm, feed flow rate 804 mL/min and feed concentration of 5% v/v of linalool and linalyl acetate in ethanol). PMMA completely disintegrated in feed solution, and PC was too brittle to make an effective homogeneous membrane. PA, PC, PEI and PTFE had the highest efficiency (selectivity x flow rate) in their homogeneous form. However, PEI, PI and PTFE had the greatest selectivity, thus further trials should be done to improve stability and flow rates through these membranes. Pervaporation selectivity did not always follow trends predicted by HSP. Although polymers such as PA, PEI, PES, and PI preferentially permeated linalool as predicted, PC, PP and PTFE did not preferentially permeate linalyl acetate. This may have been due to the difference in size and diffusivity of these molecules (linalyl acetate, the larger molecule, did not follow the sorption selectivity predictions), or reliability of literature HSP values and those calculated by group contribution. This research shows that HSP is a good screening method for pervaporation membranes, especially where the molecules being separated are of comparable size. Polymers that have HSP close to the desired component and not to other components tend to have the best selectivity and flux characteristics. However, diffusion is an important factor, and is not completely accounted for by HSP. Recommendations for further research include: carrying out pervaporation analyses of selected polymers using pure lavender essential oil; modifying polymers to form asymmetric or composite membranes with improved permeation characteristics; and potential use of thin channel inverse gas chromatography to determine a more accurate HSP which includes diffusivity.
机译:蒸发是在环境温度下从液体混合物中分离出挥发性成分的方法。涂料加工行业使用Hansen溶解度参数(HSP)表示聚合物的溶解度。研究了该方法预测溶剂-聚合物亲和力的潜力,以筛选潜在的膜材料,以对包含芳樟醇和乙酸芳樟酯(薰衣草精油的主要成分)的模型溶液在乙醇中进行全蒸发。对各种聚合物的已发布HSP值进行整理,并进行统计分析以确定聚合物种类的HSP值变化。对通过均质膜分离的有机/有机二元溶液的渗透蒸发的已发表研究的研究表明,其HSP值最接近聚合物的溶剂会优先渗透。这种关系并不总是适用于卤代溶剂或水溶液/有机溶液。使用这两个参数之间的对数关系,解决了有关聚合物吸收溶剂和HSP相对能量差异之间关系的文献冲突。选择了以下膜,使用其HSP表示它们与薰衣草油成分发生相互作用的潜力:聚酰胺(PA:26.9 micro; m),聚碳酸酯(PC:20.5 micro; m),聚醚酰亚胺(PEI:29.2 micro) ; m),聚醚砜(PES:27.6 micro; m),聚乙烯(HDPE:10 micro; m,LDPE:13-30 micro; m),聚酰亚胺(PI:30.0 micro; m),聚(甲基)甲基丙烯酸酯)(PMMA:50微米),聚丙烯(PP:15.9微米)和聚四氟乙烯(PTFE:26.7微米)。使用从溶胀实验获得的平均值,基团贡献率(使用Hoftyzer-Van Krevelen,Hoy和Beerbower方法计算),折射率(分散成分),介电常数(极性分量),以及已发布的HSP值。全蒸发实验研究了膜厚度,工艺温度,渗透压力,撞击射流高度,进料流速和浓度以及预浸膜的影响。聚乙烯膜的流速和选择性膜厚度是影响膜选择性的主要因素。最薄的膜(11.3-14.8微米)比> 24.7微米的膜的选择性差得多。温度在22-34ordm; C之间,透过压力<10 kPa,冲击射流高度在0.36-3.36 mm之间,进料流速在541-1328 mL / min之间,浓度为1.78-6.01%v / v的芳樟醇和乙酸芳樟酯乙醇对选择性没有明显影响。流速随着工作温度,渗透压力和撞击喷嘴高度而增加。然而,进料流速和浓度对膜通量速率没有影响。预浸膜减少了达到稳态的时间。在标准操作条件下(渗透温度30ordm; C,渗透压力 10 kPa,撞击射流高度1.36 mm,进料流速804 mL / min,进料浓度为5%v / v的芳樟醇和乙酸芳樟酯)进一步研究所选膜。在乙醇中)。 PMMA在进料溶液中完全崩解,PC太脆,无法制成有效的均质膜。 PA,PC,PEI和PTFE均质形式的效率最高(选择性x流速)。但是,PEI,PI和PTFE具有最大的选择性,因此应进行进一步试验以提高通过这些膜的稳定性和流速。渗透蒸发的选择性并不总是遵循HSP预测的趋势。尽管如所预测的,PA,PEI,PES和PI等聚合物优先渗透芳樟醇,但PC,PP和PTFE并未优先渗透乙酸芳樟酯。这可能是由于这些分子(乙酸芳基酯,较大的分子,没有遵循吸附选择性的预测)在大小和扩散率方面的差异,或者是由于文献HSP值以及通过基团贡献计算得出的可靠性。这项研究表明,HSP是一种很好的筛选全蒸发膜的方法,尤其是在分离的分子具有可比较大小的情况下。 HSP接近所需组分而不是其他组分的聚合物往往具有最佳的选择性和通量特性。但是,扩散是一个重要因素,HSP并不能完全解决问题。进一步研究的建议包括:使用纯薰衣草精油对选定的聚合物进行全蒸发分析;改性聚合物以形成具有改善的渗透特性的不对称或复合膜;以及潜在的利用薄通道逆气相色谱法确定更准确的HSP(包括扩散率)的方法。

著录项

  • 作者

    Buckley-Smith Marion;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号