首页> 外文OA文献 >Annotate-Sample-Average (ASA): A New Distant Supervision Approach for Twitter Sentiment Analysis
【2h】

Annotate-Sample-Average (ASA): A New Distant Supervision Approach for Twitter Sentiment Analysis

机译:注释样本平均(ASA):一种用于Twitter情绪分析的新型远程监督方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The classification of tweets into polarity classes is a popular task in sentiment analysis. State-of-the-art solutions to this problem are based on supervised machine learning models trained from manually annotated examples. A drawback of these approaches is the high cost involved in data annotation. Two freely available resources that can be exploited to solve the problem are: 1) large amounts of unlabelled tweets obtained from the Twitter API and 2) prior lexical knowledge in the form of opinion lexicons. In this paper, we propose Annotate-Sample-Average (ASA), a distant supervision method that uses these two resources to generate synthetic training data for Twitter polarity classification. Positive and negative training instances are generated by sampling and averaging unlabelled tweets containing words with the corresponding polarity. Polarity of words is determined from a given polarity lexicon. Our experimental results show that the training data generated by ASA (after tuning its parameters) produces a classifier that performs significantly better than a classifier trained from tweets annotated with emoticons and a classifier trained, without any sampling and averaging, from tweets annotated according to the polarity of their words.
机译:将推文分类为极性类别是情感分析中的一项常见任务。该问题的最新解决方案基于从人工注释的示例中训练而来的受监督机器学习模型。这些方法的缺点是数据注释中涉及的高成本。可以用来解决问题的两个免费可用资源是:1)从Twitter API获得的大量未标记的推文,以及2)以意见词典的形式提供的先验词汇知识。在本文中,我们提出了Annotate-Sample-Average(ASA),一种使用这两种资源来生成Twitter极性分类的综合训练数据的远程监管方法。通过对包含带有相应极性的单​​词的未标记推文进行采样和平均,可以生成正负训练实例。单词的极性由给定的极性词典确定。我们的实验结果表明,由ASA生成的训练数据(在调整其参数之后)产生的分类器的性能明显好于根据表情符号注释的推文训练的分类器和根据采样结果注释的推文训练的分类器,而无需进行任何采样和平均他们话语的极性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号