首页> 外文OA文献 >Evaluation of estimators for ill-posed statistical problems subject to multicollinearity
【2h】

Evaluation of estimators for ill-posed statistical problems subject to multicollinearity

机译:多重共线性下不适定统计问题的估计量评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multicollinearity is a significant problem in economic analysis and occurs in any situation where at least two of the explanatory variables in a model are related to one another. The presence of multicollinearity is problematic, as changes in the dependent variable cannot be accurately attributed to individual explanatory variables. It can cause estimated coefficients to be unstable and have high variances, and thus be potentially inaccurate and inappropriate to guide management or policy. Due to this problem, many alternative estimators have been developed for the analysis of multicollinear data. The primary objective of this thesis is to compare and contrast the performance of some of these common estimators, as well as a number of new estimators, and test their prediction accuracy and precision under various circumstances. Through the use of non-trivial Monte Carlo experiments, the estimators are tested under 10 different levels of multicollinearity, with regressors and errors drawn from different distributions (normal, student t, chi-squared, and in the case of errors, mixed Gaussian). Insights are gained through response surface analysis, which is conducted to help summarise the output of these simulations.A number of key findings are identified. The highest levels of mean square error (MSE) are generally given by a Generalised Maximum Entropy estimator with narrow support bounds defined for its coefficients (GMEN) and the One-Step Data Driven Entropy (DDE1) model. Yet, none of the estimators evaluated produced sufficiently high levels of MSE to suggest that they were inappropriate for prediction. The most accurate predictions, regardless of the distributions tested or multicollinearity, were given by Ordinary Least Squares (OLS). The Leuven-2 estimator appeared relatively robust in terms of MSE, being reasonably invariant to changes in condition number, and error distribution. However, it was unstable due to variability in error estimation arising from the arbitrary way that probabilities are converted to coefficient values in this framework. In comparison, MSE values for Leuven-1 were low and far more stable than those reported for Leuven-2.The estimators that produced the least precision risk, as measured through mean square error loss (MSEL), were the GMEN and Leuven-1 estimators. However, the GMEN model requires exogenous information and, as such, is much more problematic to accurately apply in different contexts. In contrast, two models had very poor precision in the presence of multicollinear data, the Two-Step Data Driven Entropy (DDE2) model and OLS, rendering them inappropriate for estimation in such circumstances.Overall, these results highlight that the Leuven-1 estimator is the most appropriate if a practitioner wishes to achieve high prediction accuracy and precision in the presence of multicollinearity. Nevertheless, it is critical that more attention is paid to the theoretical basis of the Leuven-1 estimator, as relating estimated probabilities to coefficients using concepts drawn from the theory of light appears highly subjective. This is illustrated through the differences in empirical results obtained for the Leuven-1 and Leuven-2 estimators.
机译:多重共线性是经济分析中的一个重要问题,并且在模型中至少两个解释变量相互关联的任何情况下都会发生。多重共线性的存在是有问题的,因为不能将因变量的变化准确地归因于各个解释变量。这可能会导致估计的系数不稳定并具有较高的方差,因此可能不准确且不适合指导管理或政策。由于这个问题,已经开发出许多可替代的估计器来分析多共线数据。本文的主要目的是比较和对比一些常见估计量以及许多新估计量的性能,并测试它们在各种情况下的预测准确性和准确性。通过使用非平凡的蒙特卡洛实验,在10种不同的多重共线性水平下测试估计量,并使用不同分布(正态,学生t,卡方,以及在有误差的情况下为混合高斯)得出的回归和误差。 。通过响应面分析获得了见解,该分析有助于总结这些模拟的输出,并确定了许多关键发现。均方误差(MSE)的最高级别通常由广义最大熵估计器给出,该估计器的系数(GMEN)和单步数据驱动熵(DDE1)模型定义了狭窄的支持范围。但是,没有一个被评估的评估者产生了足够高的MSE水平,表明他们不适合进行预测。普通最小二乘(OLS)给出最准确的预测,无论测试的分布或多重共线性如何。在MSE方面,Leuven-2估计器显得相对健壮,对于条件数和误差分布的变化是合理不变的。但是,由于在此框架中将概率转换为系数值的任意方式而导致的误差估计中的可变性,它是不稳定的。相比之下,鲁汶1号的MSE值低且比鲁汶2号报告的稳定得多。通过均方误差损失(MSEL)衡量,产生最小精度风险的估计值是GMEN和鲁汶-1估计量。但是,GMEN模型需要外部信息,因此,要准确地应用在不同的环境中会遇到更多的问题。相比之下,在存在多共线数据的情况下,两个模型的精度非常差,两步数据驱动的熵(DDE2)模型和OLS模型使它们在这种情况下不适合估算。总体而言,这些结果突出说明了Leuven-1估算器如果从业者希望在存在多重共线性的情况下实现较高的预测准确性和精度,则最合适。然而,至关重要的是,必须更多地注意Leuven-1估计器的理论基础,因为使用从光理论得出的概念将估计的概率与系数相关联似乎是主观的。通过对Leuven-1和Leuven-2估计量获得的经验结果的差异可以说明这一点。

著录项

  • 作者

    Holland Luke Murray;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号