首页> 外文OA文献 >A Naïve Bayes model based on overlapping groups for link prediction in online social networks
【2h】

A Naïve Bayes model based on overlapping groups for link prediction in online social networks

机译:基于重叠组的朴素贝叶斯模型用于在线社交网络中的链接预测

摘要

Link prediction in online social networks is useful in numerous applications, mainly for recommendation. Recently, different approaches have considered friendship groups information for increasing the link prediction accuracy. Nevertheless, these approaches do not consider the different roles that common neighbors may play in the different overlapping groups that they belong to. In this paper, we propose a new approach that uses overlapping groups structural information for building a naïve Bayes model. From this proposal, we show three different measures derived from the common neighbors. We perform experiments for both unsupervised and supervised link prediction strategies considering the link imbalance problem. We compare sixteen measures in four well-known online social networks: Flickr, LiveJournal, Orkut and Youtube. Results show that our proposals help to improve the link prediction accuracy.
机译:在线社交网络中的链接预测在许多应用中很有用,主要用于推荐。最近,不同的方法已经考虑了友谊组信息以增加链接预测精度。但是,这些方法没有考虑共同邻居在他们所属的不同重叠组中可能扮演的不同角色。在本文中,我们提出了一种新方法,该方法使用重叠的组结构信息来构建朴素的贝叶斯模型。从该建议中,我们展示了从共同邻居中得出的三种不同的度量。考虑到链路不平衡问题,我们针对无监督和有监督的链路预测策略进行了实验。我们在四个著名的在线社交网络中比较了16种度量标准:Flickr,LiveJournal,Orkut和Youtube。结果表明,我们的建议有助于提高链接预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号