首页> 外文OA文献 >Data Distribution and Communication Schemes for Solving Sparse Systems of Linear Equations from FE Applications by Parallel CG Methods
【2h】

Data Distribution and Communication Schemes for Solving Sparse Systems of Linear Equations from FE Applications by Parallel CG Methods

机译:用并行CG方法求解有限元应用中线性方程组稀疏系统的数据分布和通信方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the solution of discretized ordinary or partial differential equations it is necessary to solve systems of equations with coefficient matrices of different sparsity pattern, depending on the discretization method; using the finite element (FE) method results in largely unstructured systems of equations. Iterative solvers for equation systems mainly consist of matrix-vector products and vector-vector operations. A frequently used iterative solver is the method of conjugate gradients (CG) with different preconditioners. For parallelizing this method on a multiprocessor system with distributed memory, in particular the data distribution and the communication scheme depending on the used data structure for sparse matrices are of greatest importance for the efficient execution. These schemes can be determined before the execution of the solver by preprocessing the symbolic structure of the sparse matrix and can be exploited in each iteration. In this report, data distribution and communication schemes are presented which are based on the analysis of the column indices of the non-zero matrix elements. Performance tests of the developed parallel CG algorithms have been carried out on the distributed memory system INTEL iPSC/860 of the Research Centre Jülich with sparse matrices from FE models. These methods have performed well for matrices of very different sparsity pattern.
机译:为了解决离散化的普通或偏微分方程,有必要根据离散化方法求解具有不同稀疏度系数矩阵的方程组;使用有限元(FE)方法会导致很大程度上是非结构化的方程组。方程组的迭代求解器主要由矩阵向量乘积和向量向量运算组成。常用的迭代求解器是具有不同预处理器的共轭梯度(CG)方法。为了在具有分布式存储器的多处理器系统上并行化此方法,特别是取决于稀疏矩阵使用的数据结构的数据分布和通信方案对于有效执行至关重要。这些方案可以在求解器执行之前通过预处理稀疏矩阵的符号结构来确定,并且可以在每次迭代中使用。在此报告中,提出了基于非零矩阵元素的列索引的分析的数据分发和通信方案。已在Jülich研究中心的分布式存储系统INTEL iPSC / 860上使用有限元模型的稀疏矩阵对开发的并行CG算法进行了性能测试。这些方法对于稀疏模式非常不同的矩阵表现良好。

著录项

  • 作者

    Basermann Achim;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号