首页> 外文OA文献 >Greenhouse Gas Emissions Over a Tidal Cycle in a Freshwater Wetland
【2h】

Greenhouse Gas Emissions Over a Tidal Cycle in a Freshwater Wetland

机译:淡水湿地潮汐周期内的温室气体排放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tidal freshwater wetlands are located at the interface of non-tidal freshwater riverine systems and estuarine tidal systems. These habitats experience freshwater tides, creating unique redoximorphic soil characteristics while simultaneously presenting an opportunity for hydrologic nutrient transport into the system. Because of this periodic flooding and draining, tidal freshwater wetlands are systems of intense biogeochemical transformations, which are microbially mediated. Several microbial transformations (e.g., methanogenesis, incomplete denitrification, and nitrification) result in the production of greenhouse gases (CO2, CH4, and N2O) at globally-significant levels. For example, wetlands are one of the greatest sources of methane on Earth, accounting for 20-33% of the global methane budget (Schlesinger and Bernhardt, 2013).Compared to global methane emission estimates, the global nitrous oxide budget remains largely uncertain (Tian et al. 2015), and the contribution of wetlands is currently unknown (Schlesinger and Bernhardt, 2013). However, given that recent work by Liengaard et al. (2012) estimated that nitrous oxide emissions from the Pantanal wetland system in South America alone represent ~2% of global emissions, it is reasonable to expect wetlands to be major contributors to atmospheric concentrations of this potent greenhouse gas. Despite the growing recognition that wetlands are important sources of greenhouse gases, little research has examined how flux rates vary in response to basic environmental drivers such as tidal cyclingObjectives: The main objective of this study is to assess rates of CO2, CH4, and N2O production at high and low tides in a tidal freshwater wetlands. In addition, we sought to determine if pore water ion concentrations and edaphic characteristics fluctuate over a tidal cycle.
机译:潮汐淡水湿地位于非潮汐淡水河系和河口潮汐系统的交界处。这些生境经历了淡水潮汐,创造了独特的氧化还原形态的土壤特征,同时也提供了将水文养分运入系统的机会。由于这种周期性的洪水和排水,潮汐淡水湿地是由生物介导的强烈生物地球化学转化的系统。几次微生物转化(例如甲烷生成,不完全反硝化和硝化)导致产生全球重要水平的温室气体(CO2,CH4和N2O)。例如,湿地是地球上甲烷的最大来源之一,占全球甲烷预算的20-33%(Schlesinger and Bernhardt,2013)。与全球甲烷排放量估算相比,全球一氧化二氮预算仍然存在很大不确定性( Tian等(2015),湿地的贡献目前未知(Schlesinger和Bernhardt,2013)。但是,鉴于Liengaard等人的最新工作。 (2012年)估计仅南美南美潘塔纳尔湿地系统产生的一氧化二氮排放量就占全球排放量的2%,可以合理地预期湿地是这种有效温室气体大气浓度的主要贡献者。尽管人们越来越认识到湿地是温室气体的重要来源,但很少有研究研究通量率如何响应潮汐循环等基本环境驱动因素而变化目标:本研究的主要目标是评估CO2,CH4和N2O的产生速率在潮汐淡水湿地的涨潮和退潮时。此外,我们试图确定孔隙水离子浓度和深层特征是否在潮汐周期中波动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号