首页> 外文OA文献 >PROCESSING AND CLASSIFICATION OF PHYSIOLOGICAL SIGNALS USING WAVELET TRANSFORM AND MACHINE LEARNING ALGORITHMS
【2h】

PROCESSING AND CLASSIFICATION OF PHYSIOLOGICAL SIGNALS USING WAVELET TRANSFORM AND MACHINE LEARNING ALGORITHMS

机译:小波变换和机器学习算法对生理信号的处理和分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the last century, physiological signals have been broadly analyzed and processed not only to assess the function of the human physiology, but also to better diagnose illnesses or injuries and provide treatment options for patients. In particular, Electrocardiogram (ECG), blood pressure (BP) and impedance are among the most important biomedical signals processed and analyzed. The majority of studies that utilize these signals attempt to diagnose important irregularities such as arrhythmia or blood loss by processing one of these signals. However, the relationship between them is not yet fully studied using computational methods. Therefore, a system that extract and combine features from all physiological signals representative of states such as arrhythmia and loss of blood volume to predict the presence and the severity of such complications is of paramount importance for care givers. This will not only enhance diagnostic methods, but also enable physicians to make more accurate decisions; thereby the overall quality of care provided to patients will improve significantly. In the first part of the dissertation, analysis and processing of ECG signal to detect the most important waves i.e. P, QRS, and T, are described. A wavelet-based method is implemented to facilitate and enhance the detection process. The method not only provides high detection accuracy, but also efficient in regards to memory and execution time. In addition, the method is robust against noise and baseline drift, as supported by the results. The second part outlines a method that extract features from ECG signal in order to classify and predict the severity of arrhythmia. Arrhythmia can be life-threatening or benign. Several methods exist to detect abnormal heartbeats. However, a clear criterion to identify whether the detected arrhythmia is malignant or benign still an open problem. The method discussed in this dissertation will address a novel solution to this important issue. In the third part, a classification model that predicts the severity of loss of blood volume by incorporating multiple physiological signals is elaborated. The features are extracted in time and frequency domains after transforming the signals with Wavelet Transformation (WT). The results support the desirable reliability and accuracy of the system.
机译:在上个世纪,对生理信号进行了广泛的分析和处理,不仅可以评估人体生理机能,还可以更好地诊断疾病或受伤并为患者提供治疗选择。特别是,心电图(ECG),血压(BP)和阻抗是处理和分析的最重要的生物医学信号之一。利用这些信号的大多数研究试图通过处理这些信号之一来诊断重要的不规则现象,例如心律不齐或失血。但是,它们之间的关系尚未使用计算方法进行充分研究。因此,对于所有护理人员而言,从所有代表状态的心律失常和血容量减少的生理信号中提取和组合特征以预测此类并发症的存在和严重性的系统至关重要。这不仅可以增强诊断方法,还可以使医生做出更准确的决定。因此,提供给患者的总体护理质量将大大提高。在论文的第一部分中,描述了用于检测最重要的波即P,QRS和T的ECG信号的分析和处理。实现了基于小波的方法,以促进和增强检测过程。该方法不仅提供高检测精度,而且在存储和执行时间方面也很有效。另外,结果证明该方法对噪声和基线漂移具有鲁棒性。第二部分概述了一种从ECG信号中提取特征以分类和预测心律不齐严重程度的方法。心律失常可能危及生命或良性。存在几种检测异常心跳的方法。但是,确定检测出的心律失常是恶性还是良性的明确标准仍然是一个未解决的问题。本文所讨论的方法将解决这一重要问题的新颖解决方案。在第三部分中,阐述了一种通过合并多个生理信号来预测失血严重程度的分类模型。用小波变换(WT)变换信号后,在时域和频域中提取特征。结果支持系统的理想可靠性和准确性。

著录项

  • 作者

    Bsoul Abed Al-Raoof;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号