首页> 外文OA文献 >New materials for magnetic refrigeration: the magnetocaloric effect in MnCoGe-based intermetallics
【2h】

New materials for magnetic refrigeration: the magnetocaloric effect in MnCoGe-based intermetallics

机译:磁制冷的新材料:MnCoGe基金属间化合物中的磁热效应

摘要

Magnetic cooling based on the magnetocaloric effect is topical for energy efficiency and environmental reasons. The MnCoGe family of compounds is promising for magnetic cooling which do not contain higher cost rare earths and can provide a working temperature range near room temperature. MnCoGe has two stable crystallographic structures, the low-temperature TiNiSi-type orthorhombic structure (Pnma, martensitic phase) and the high-temperature Ni₂In-type hexagonal structure (P6₃/mmc, austenitic phase). In this work, this martensitic transformation was adjusted by substitution of Fe or Ni for Mn or Co. Variable temperature x-ray diffraction, neutron diffraction and differential scanning calorimetry were used to determine the nature and position of the adjusted transitions. The magnetic properties in these compounds were studied by magnetisation and neutron diffraction experiments. Magnetocaloric effects were also explored.In as-prepared (Mn₁₋ₓFeₓ)CoGe (x = 0.01 to 0.04) and as-prepared Mn(Co₀․₉₆Fe₀․₀₄)Ge, the Fe substitution reduces the martensitic transformation temperature TM to near room temperature. Ferromagnetic structures with magnetic moments on the Mn sublattice along the cₒᵣth-axis are found in both (Mn₁₋ₓFeₓ)CoGe and Mn(Co₀․₉₆Fe₀․₀₄)Ge compounds below TM. The analysis of magnetisation measurements, plus variable temperature x-ray and neutron diffraction indicate that a magneto-structural transition exists in (Mn₁₋ₓFeₓ)CoGe (x = 0.01 to 0.03) and Mn(Co₀․₉₆Fe₀․₀₄)Ge. Large entropy changes via the magnetocaloric effect were observed near room temperature.⁵⁷Fe Mössbauer spectroscopy studies indicated that Fe is distributed on both the Mn and the Co sites with greater preference to occupy the Co site in both as-prepared (Mn₁₋ₓFeₓ)CoGe and Mn(Co₁₋ₓFeₓ)Ge, while some of the Fe moves from the Co site to the Fe site during annealing.In annealed (Mn₁₋ₓNiₓ)CoGe (x= 0.03 to 0.07) and annealed Mn(Co₀․₈₆Ni₀․₁₄)Ge, ferromagnetic structures with a magnetic moment on the Mn sublattice along the cₒᵣth-axis are obtained. However, analyses of neutron diffraction measurements point to the cₒᵣth-axis easy ferromagnetic and incommensurate magnetic structures with increasing Ni concentration in annealed Mn(Co₁₋ₓNiₓ)Ge (x = 0.4 to 1.0) compounds. Magneto-structural transitions form in annealed (Mn₁₋ₓNiₓ)CoGe (x= 0.03 and 0.04) and Mn(Co₁₋ₓNiₓ)Ge (x = 0.3 to 0.6). Conventional and/or inverse magnetocaloric effects are observed in these compounds.
机译:由于能量效率和环境原因,基于磁热效应的磁冷却是热门话题。 MnCoGe族化合物有望用于磁冷却,其中不包含成本更高的稀土元素,并且可以提供接近室温的工作温度范围。 MnCoGe具有两种稳定的晶体结构,即低温TiNiSi型正交晶结构(Pnma,马氏体相)和高温Ni 2 In型六角形结构(P6 1 / mmc,奥氏体相)。在这项工作中,通过用Fe或Ni代替Mn或Co来调节马氏体相变。使用可变温度X射线衍射,中子衍射和差示扫描量热法确定调节后的跃迁的性质和位置。通过磁化和中子衍射实验研究了这些化合物的磁性。还研究了磁热效应。在制备的(Mn₁₋ₓFeₓ)CoGe(x = 0.01至0.04)和制备的Mn(Co₀․₉₆Fe₀․₀₄)Ge中,Fe的替代将马氏体转变温度TM降低到接近室温。在TM以下的(Mn₁₋ₓFeₓ)CoGe和Mn(Co₀․₉₆Fe₀․₀₄)Ge化合物中均发现了沿cₒᵣ轴在Mn亚晶格上具有磁矩的铁磁结构。磁化测量的分析,加上可变的X射线和中子衍射表明,在(Mn₁₋ₓFe₁₋ₓ)CoGe(x = 0.01至0.03)和Mn(Co₀․₉₆Fe₀․₀₄)Ge中存在磁结构转变。在室温附近观察到通过磁热效应产生的大熵变化。⁵⁷FeMössbauer光谱研究表明,Fe既分布在Mn和Co位点上,又更倾向于占据制备的(Mn₁₋ₓFe₁₋ₓ)CoGe和Mn(Co₁₋ₓFeₓ)Ge,而部分Fe在退火过程中会从Co处转移到Fe处;在退火的(MnₓNiGe)CoGe(x = 0.03至0.07)和退火的Mn(Co₀․₈₆Ni₀․₁₄)中得到Ge,沿c轴在Mn亚晶格上具有磁矩的铁磁结构。然而,对中子衍射测量的分析指出,随着退火的Mn(Co₁₋ₓNiₓ)Ge(x = 0.4至1.0)化合物中Ni含量的增加,c轴容易形成铁磁和不相称的磁性结构。在退火的(Mn₁₋ₓNiₓ)CoGe(x = 0.03和0.04)和Mn(Co₁₋ₓNiₓ)Ge(x = 0.3至0.6)中形成磁-结构转变。在这些化合物中观察到常规和/或逆磁热效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号