首页> 外文OA文献 >Using Machine Learning to Automatically Plan Concrete Delivery Dispatching
【2h】

Using Machine Learning to Automatically Plan Concrete Delivery Dispatching

机译:使用机器学习来自动计划混凝土输送调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Demand for concrete, regardless of the geographical location, is increasing globally. While the Ready Mixed Concrete (RMC) industry is facing an ever-increasing demand for concrete, and although concrete is mostly mixed automatically by machines, the allocation of resources remains labour intensive and is mostly handled by experts in RMC dispatching rooms. This thesis introduces a new method for the automatic planning of concrete delivery dispatching. This method uses machine learning to characterises an expert decision making process. Seven supervised machine learning versions with their boosted algorithms are selected for this purpose and tested with field data. Random-Forest outperforms the other selected algorithms. An method is developed to check the feasibility of misclassified deliveries and the results show that around 30% of misclassified solutions are achievable. In this thesis the Ready Mixed Concrete Dispatching Problem (RMCDP) with/without time window is mathematically modelled and used for assessing the quality of experts’ decisions as well as the quality of solutions obtained by machine learning algorithms (Random-Forest). As empirically proved in this thesis, obtaining exact solutions for large scale RMCDPs with available computing facilities is intractable and characterized as NP-hard. Two heuristic methods (Robust-GA and Sequential-GA) are developed to find a near optimum solution in the absence of an exact solution. Four RMCDPs are selected for evaluating the available methods. The results show that Sequential-GA converges 10 times faster than Robust-GA with achieved solutions at 30% less cost. Also, although there is around 10% gap between solutions obtained by Sequential-GA and the optimum solution, the computing time of Sequential-GA is 100 times less than when using the optimization approach. Thus, the best solutions for all 4 test RMCDPs are obtained by comparing the exact solutions (IP and MIP) and Robust-GA and Sequential-GA. Comparing the best solution with the experts’ decisions reveals that the decisions made by experts are near optimum with an 90% of optimality. The accuracy of the machine learning approach is slightly better than the experts’ decisions and Sequential-GA, however, the computing time for the machine learning based method is significantly lower than for the available approaches. This supports the potential of using machine learning techniques in practical Ready Mixed Concrete Dispatching Problems.
机译:无论地理位置如何,全球对混凝土的需求都在增长。尽管预拌混凝土(RMC)行业面临着对混凝土的不断增长的需求,尽管混凝土大多是由机器自动混合的,但是资源分配仍然是劳动密集型的,并且大部分由RMC调度室的专家来处理。本文介绍了一种新的混凝土交付调度自动计划方法。该方法使用机器学习来表征专家决策过程。为此,选择了七个具有增强算法的监督机器学习版本,并通过现场数据进行了测试。 Random-Forest优于其他选择的算法。开发了一种方法来检查错误分类的交付的可行性,结果表明可以实现大约30%的错误分类的解决方案。在本文中,对带有/不带有时间窗口的预拌混凝土调度问题(RMCDP)进行了数学建模,并用于评估专家决策的质量以及通过机器学习算法(Random-Forest)获得的解决方案的质量。如本文中的经验证明,利用可用的计算设施来为大型RMCDP获取精确的解决方案是棘手的,并且具有NP-hard的特征。开发了两种启发式方法(Robust-GA和Sequential-GA)以在没有精确解的情况下找到接近最佳的解决方案。选择了四个RMCDP来评估可用方法。结果表明,Sequential-GA的收敛速度比Robust-GA快10倍,而且解决方案的成本降低了30%。同样,尽管通过顺序GA得出的解与最佳解之间存在约10%的差距,但是与使用优化方法时相比,顺序GA的计算时间要少100倍。因此,通过比较精确的解决方案(IP和MIP)以及Robust-GA和Sequential-GA,可以获得所有4个测试RMCDP的最佳解决方案。将最佳解决方案与专家的决策进行比较后发现,专家做出的决策几乎是最优的,具有90%的最优性。机器学习方法的准确性比专家的决定和Sequential-GA稍好,但是基于机器学习的方法的计算时间明显少于可用方法。这支持了在实际的预拌混凝土调度问题中使用机器学习技术的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号