首页> 外文OA文献 >Energy and utility flow modelling in manufacturing systems
【2h】

Energy and utility flow modelling in manufacturing systems

机译:制造系统中的能源和公用设施流量建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the previous decades, industry has been one of the major drivers of global economic growth and the issue of energy efficiency has become a matter of concern in different industries. Improving energy efficiency in industry, particularly in manufacturing plays a key role in reducing production costs and the environmental impact. Manufacturers also are driven to practise more energy efficient measures because of governmental regulations and policies.In this regard, a holistic view of the entire system is needed in which the dynamic behaviour of the production processes, supporting services, other energy consumers and their interrelationships must be considered. Predominantly, the underlying system is too complex so it is vital to utilise simulation to model the system. Furthermore, a simulation model can be used to design a system with an optimal performance where the performance relies on the value of some input parameters and the point is how to determine the values of these parameters (possibly subjected to some constraints) which contribute to an optimal performance.To address both above-mentioned issues, an integrated simulation-based optimisation framework was proposed in which a simulation model represented the production system in a hierarchical structure and simulated the energy consumed in the system using a bottom to up approach. Six basic modules were embedded, including four modules for main energy consuming equipment (one for machine tools and process chains, and three for TBSs including steam generation unit, compressed air system and HVAC systems). Careful observations of a wide range of diverse equipment were carried out for the first four modules, and then the basic components of a generic state-based energy consumption model were identified for each. Regarding the optimisation part of the framework, a population-based optimisation algorithm called the Cross Entropy method was utilised which treated the simulation model as a black box model to evaluate the system under different settings. A weighted sum method was used to combine different objectives in case of multi objectives. The proposed methodology was applied in two different manufacturing environments; a mass production system where a small number of products with large quantity were produced and a discrete-part production environment where a medium number of products with medium quantity were manufacture.
机译:在过去的几十年中,工业一直是全球经济增长的主要驱动力之一,而能源效率问题已成为不同行业关注的问题。提高工业,特别是制造业的能源效率在降低生产成本和环境影响方面起着关键作用。由于政府的法规和政策,制造商还被迫采取更多的节能措施。在这方面,需要对整个系统进行全面的了解,其中必须动态地了解生产过程,支持服务,其他能源消费者及其相互关系的动态行为。被考虑。主要是底层系统过于复杂,因此利用仿真对系统进行建模至关重要。此外,可以使用仿真模型来设计具有最佳性能的系统,其中性能取决于某些输入参数的值,而重点是如何确定这些参数的值(可能受到某些约束),这些值会导致性能下降。为了解决上述两个问题,提出了一个基于仿真的集成优化框架,该仿真框架中的仿真模型以分层结构表示生产系统,并使用自下而上的方法来仿真系统中的能耗。嵌入了六个基本模块,其中包括四个用于主要能耗设备的模块(一个用于机床和工艺链,三个用于TBS,包括蒸汽发生单元,压缩空气系统和HVAC系统)。在前四个模块中仔细观察了各种各样的设备,然后为每个模型确定了基于状态的通用能耗模型的基本组成部分。关于框架的优化部分,使用了一种称为交叉熵方法的基于种群的优化算法,该算法将模拟模型视为黑盒模型,以评估不同设置下的系统。在多目标情况下,使用加权总和法组合不同目标。所提出的方法已应用于两种不同的制造环境;大规模生产系统,其中生产少量的大量产品;离散生产环境,其中生产大量的中等数量的产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号