首页> 外文OA文献 >Ontology-based approaches to identify patients with type 2 diabetes mellitus from electronic health records: development and validation
【2h】

Ontology-based approaches to identify patients with type 2 diabetes mellitus from electronic health records: development and validation

机译:基于本体论的从电子健康记录中识别2型糖尿病患者的方法:开发和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

IntroductionIssues around the data quality (DQ) of patient registers are often raised when a data set is used for clinical or research purposes. An ontology-based approach provides a flexible semantic framework and supports the automation of data extraction from electronic health records (EHRs). This research aimed to assess the flexibility of an ontology-based approach to accurately identify patients with type 2 diabetes mellitus (T2DM) in a clinical database. This research also demonstrated the role of an ontology-based approach to assess quality of a register. Method A systematic review was conducted, which addressed DQ, ‘fitness for purpose’ of data used and ontology-based approaches. Included papers were critically appraised with a ‘context-mechanism-impacts/outcomes’ overlay. Using a literature review, the Australian National Guidelines for type 2 diabetes mellitus, the Systematised Nomenclature of Medicine – Clinical Term – Australian Release and input from health professionals, a five-stage methodology for DQ ontology (MDQO) was adopted. The methodology consisted of: (1) knowledge acquisition; (2) conceptualisation; (3) semantic modelling; (4) knowledge representation; and (5) validation. Although MDQO can be used in any validation domain, this thesis validated it in the context of T2DM diagnosis and management. The accuracy of the MDQO was validated with a manual audit of general practice EHRs through the diabetes mellitus ontology. Contingency tables were prepared and sensitivity and specificity (accuracy) of the model to diagnose T2DM was determined, using T2DM cases of a general practice, which kept a diabetes register with complete and current reason for visit information, found by manual EHR audit as the gold standard. Accuracy was determined with three attributes – reason for visit, medication and pathology – singly and in combination. ResultsThe T2DM ontology included six object properties, 15 data properties, 68 concepts and 14 major themes in four main classes: actor, context, mechanism and impact. The validation showed sensitivity and specificity were 100% and 99.88% respectively with reason for visit; 96.55% and 98.97% with medication; and 15.6% with pathology test result. This suggests that medication and pathology test result data were not as complete as reason for visit data for the general practice audited. However, the completeness was adequate for the purpose of this thesis, as confirmed by the very small relative deterioration of accuracy (sensitivity and specificity of 97.67% and 99.18%, respectively) when calculated for the combination of reason for visit, medication and pathology test result.DiscussionCurrent research shows a lack of comprehensive ontology-based approaches for DQ in chronic disease management and there are few validation studies comparing ontological and non-ontological approaches on the assessment of clinical DQ. The MDQO developed in this thesis provides a semantically flexible mechanism to capture patients’ data from EHRs. It is also designed to be generalisable and reusable. This T2DM ontology-based model (constructed using the MDQO) is sufficiently accurate to support a semantic approach, using reason for visit, medication and pathology tests data from EHRs to define patients with T2DM. The accuracy of the T2DM ontology approach was established with respect to the DQ dimensions. The MDQO helps with the implementation of DQ based on “fitness for use” and hence better utilisation of routinely-collected clinical data for research. ConclusionThis thesis contributes an ontology-based methodology for DQ assessment and management in a diabetes context. It provides new insights into the identification and assessment of patients with T2DM from EHR data. This ontology-based approach can potentially support the assessment of the impact of DQ on a data set in terms of the purpose for which it is used. There is a need for similar ontology-based research in other clinical domains, beyond T2DM, to address DQ in chronic disease management.
机译:简介当将数据集用于临床或研究目的时,通常会引发有关患者登记册数据质量(DQ)的问题。基于本体的方法提供了灵活的语义框架,并支持从电子健康记录(EHR)提取数据的自动化。这项研究旨在评估基于本体的方法在临床数据库中准确识别2型糖尿病(T2DM)患者的灵活性。这项研究还证明了基于本体的方法在评估寄存器质量方面的作用。方法进行了系统的评估,其中涉及DQ,所用数据的“适合目的”和基于本体的方法。所收录的论文均经过严格评估,并带有“上下文机制影响/结果”叠加图。通过文献综述,《澳大利亚国家2型糖尿病指南》,《医学术语的系统化-临床术语》,《澳大利亚释放》以及卫生专业人员的意见,采用了DQ本体论(MDQO)的五阶段方法。该方法包括:(1)知识获取; (2)概念化; (3)语义建模; (4)知识表示; (5)验证。尽管MDQO可以在任何验证领域中使用,但本文还是在T2DM诊断和管理的背景下对其进行了验证。 MDQO的准确性已通过糖尿病本体对常规EHR的手动审核得到验证。使用常规的T2DM病例,准备了应急表,并确定了诊断T2DM的模型的敏感性和特异性(准确性),该病例使糖尿病患者有了完整的和当前的就诊信息,并通过人工EHR审核发现了黄金标准。准确性是由三个属性-访问原因,药物和病理-单独或结合起来确定的。结果T2DM本体包括四个主要类别的六个对象属性,15个数据属性,68个概念和14个主要主题:参与者,上下文,机制和影响。验证结果表明,有探访原因的敏感性和特异性分别为100%和99.88%。服药率为96.55%和98.97%;病理检查结果占15.6%。这表明药物和病理学检查结果数据不如接受审计的一般实践的就诊数据原因完整。但是,就访问目的,药物和病理学检查的综合因素计算得出的准确性相对很小的下降(分别为97.67%和99.18%的相对准确度)证实,完整性就本论文而言是足够的。讨论当前的研究表明,在慢性疾病管理中缺乏基于本体的DQ方法,并且很少有比较研究将本体论和非本体论方法用于临床DQ评估的验证研究。本文开发的MDQO提供了一种语义上灵活的机制,可以从EHR中捕获患者的数据。它还被设计为可通用和可重用的。这种基于T2DM本体的模型(使用MDQO构建)足够准确,可以支持语义方法,它使用来自EHR的拜访原因,药物和病理学测试数据来定义T2DM患者。 T2DM本体方法的准确性是根据DQ维度确定的。 MDQO帮助基于“适合使用”的DQ实施,从而更好地利用常规收集的临床数据进行研究。结论本文为糖尿病背景下的DQ评估和管理提供了一种基于本体的方法。它为从EHR数据中鉴定和评估T2DM患者提供了新的见解。这种基于本体的方法可以潜在地支持根据DQ的用途评估DQ对数据集的影响。除了T2DM以外,还需要在其他临床领域中进行基于本体的类似研究,以解决慢性疾病管理中的DQ问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号