首页> 外文OA文献 >Development of high-order doubly asymptotic open boundaries for wave propagation in unbounded domains by extending the scaled boundary finite element method
【2h】

Development of high-order doubly asymptotic open boundaries for wave propagation in unbounded domains by extending the scaled boundary finite element method

机译:通过扩展比例边界有限元方法,开发无界域中波传播的高阶双渐近开放边界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents the development of high-order doubly asymptotic open boundaries used for the numerical simulation of wave propagation problems in unbounded domains, including homogeneous semi-infinite layers with a constant depth, homogeneous full-planes with a circular cavity and semi-infinite layered systems. The proposed open boundaries are necessary for dynamic and seismic analyses of large-scale structures such as dams, nuclear power plants etc. The theoretical framework of the research in the thesis is extended by employing the scaled boundary finite element method, which is a semi-analytical fundamental-solution-less boundary-element method based on finite elements.To avoid the computationally expensive task of numerically integrating the scaled boundary finite element equation in dynamic stiffness, the doubly asymptotic continued fraction solution for dynamic stiffness matrices is developed in the frequency domain using the technique of continued fraction. Factor coefficients or matrices are introduced in the continued fraction solution to improve the stability of the solution. As the continued fraction orders increase, the doubly asymptotic continued fraction solution converges to the exactness at both high- and low-frequency limits.By introducing auxiliary variables and the doubly asymptotic continued fraction solution to the force-displacement relationship in the frequency domain, a high-order doubly asymptotic open boundary condition is obtained. The open boundaries are expressed as systems of first-order ordinary differential equations in the time domain which are similar to the equation of motion with time-independent matrices in structural dynamics.The high-order doubly asymptotic open boundaries can be coupled seamlessly with standard finite elements. The accuracy of the results in the frequency and time domains depends on the orders of continued fraction selected by the user. Standard time-step schemes e.g. the Newmark's method etc. in structural dynamics are directly applicable to the high-order doubly asymptotic open boundaries for the implementation in the time domain. No convolution integral, which is the expensive task in the time-domain analysis, is required.
机译:本文提出了用于无界域中波传播问题数值模拟的高阶双渐近开放边界的发展,包括具有恒定深度的均匀半无限层,具有圆形空腔的均匀全平面和半无限分层系统。提出的开放边界对于大坝,核电站等大型结构的动力和地震分析是必不可少的。本文的研究理论框架是通过采用比例边界有限元方法扩展的,该方法是半边界法。为了避免基于有限元的基本无分析解析边界元方法。为避免将标度边界有限元方程数值化为动态刚度的计算量大的工作,在频域中开发了动态刚度矩阵的双渐近连续分数解。使用连续分数技术。将因子系数或矩阵引入连续分数溶液中,以提高溶液的稳定性。随着连续分数阶数的增加,双渐近连续分数解在高频和低频极限处都收敛到精确度。通过在频域中将辅助变量和双渐近连续分数解引入力-位移关系,a得到高阶双渐近开放边界条件。开放边界表示为时域中的一阶常微分方程组,类似于结构动力学中具有时间独立矩阵的运动方程,高阶双渐进开放边界可以与标准有限元无缝耦合元素。频域和时域中结果的准确性取决于用户选择的连续分数的顺序。标准时间步计划,例如结构动力学中的纽马克方法等直接适用于时域上的高阶双渐近开放边界。不需要卷积积分,这是时域分析中的昂贵任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号