首页> 外文OA文献 >Large Scale Multi-Objective Optimization for Dynamic Airspace Sectorization
【2h】

Large Scale Multi-Objective Optimization for Dynamic Airspace Sectorization

机译:动态空域划分的大规模多目标优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key limitation in accommodating continuing air traffic growth is the fixed airspace structure (sector boundaries), which is largely determined by historical flight profiles that have evolved over time. The sector geometry has stayed relatively constant despite the fact that route structures and demand have changed dramatically over the past decade.Dynamic Airspace Sectorization (DAS) is a concept where the airspace is redesigned dynamically to accommodate changing traffic demands. Various methods have been proposed to dynamically partition the airspace to accommodate traffic growth while also considering other sector constraints and efficiency metrics. However, these approaches suffer several operational drawbacks, and their computational complexity increases exponentially as the airspace size and traffic volume increase.In this thesis, I experimentally evaluate and identify gaps in existing 3D sectorization methods, and propose an improved Agent Based Model (iABM) to address these gaps. I also propose three additional models using KD-Tree, Support Plane Bisection (SPBM) and Constrained Voronoi Diagrams (CVDM) in 3D, to partition the airspace to satisfy the convexity constraint and overcome high computational cost inherent in agent-based approaches. I then look into optimizing the airspace sectors generated by these four models (iABM, KD-Tree, SPBM, and CVDM), using a multi-objective optimisation approach with Air Traffic Controller (ATC) task load balancing, average sector flight time, and minimum distance between sector boundaries and traffic flow crossing points as the three objectives. The performance and efficiency of the proposed models are demonstrated by using sample air traffic data. Experimental results show that all the approaches have strengths and weaknesses. iABM has the best performance on task load balancing, but it can't satisfy the convexity constraint. SPBM and CVDM perform worse than iABM on task load balancing but better on average sector flight time, and they can satisfy the convexity constraint. The KD-tree based model is the most efficient, but not effective as it performed poorly on the given objectives because of its representational bias, which also limits its use in an operational environment.To further investigate SPBM and CVDM for national airspace sectorization, a real time air traffic monitoring and advisory system, called TOP-LAT (Trajectory Optimization and Prediction of Live Air Traffic), is developed and implemented. TOP-LAT is a real time system, synthesizing real time air traffic data to measure and analyse airspace capacity, airspace safety, air traffic flow and aviation emission, to enable ATM participants to access timely, accurate and reliable information for ATM decisions. TOP-LAT provides an ATM environment to evaluate and investigate the advanced ATM concepts, such as DAS. A number of experiments of Australian airspace sectorization by the two proposed DAS models are conducted in this thesis. In these experiments, the current and projected air traffic demands are generated based on public statistics, and some future ATM concepts (e.g. User Preferred Trajectory) are prototyped in order to investigate the performances of the proposed models. The results show that both models have advantages over the current airspace sector configurations in terms of task load balancing, longer flight sector time, larger minimum distance between sector boundaries and traffic flow crossing points, and reduced maximum task load for ATC. These experiments also show that Both models have the capability to be compatible with other advanced ATM concepts. However, no single approach can meet all complex air traffic management objectives. It is the air traffic flow pertaining to the kind of airspace and the associated traffic complexity which can determine the best approach for dynamic sectorization.
机译:适应持续的空中交通量增长的一个关键限制是固定的空域结构(部门边界),这在很大程度上取决于随时间演变的历史飞行情况。尽管在过去十年中航线结构和需求发生了巨大变化,但部门的几何形状仍保持相对恒定。动态空域划分(DAS)是一个概念,其中动态地重新设计了空域,以适应不断变化的交通需求。已经提出了各种方法来动态地划分空域以适应业务量的增长,同时还考虑其他部门的约束和效率度量。但是,这些方法存在一些操作上的缺陷,并且随着空域大小和业务量的增加,它们的计算复杂度呈指数增长。本文通过实验评估和识别现有3D扇区化方法中的差距,并提出了一种改进的基于代理的模型(iABM)解决这些差距。我还提出了使用KD-Tree,支持平面二等分(SPBM)和3D约束Voronoi图(CVDM)的三个附加模型,以划分空域以满足凸度约束并克服基于代理的方法固有的高计算成本。然后,我将结合使用多目标优化方法和空中交通管制员(ATC)任务负载平衡,平均航段飞行时间,以及通过以下两种方法,研究优化由这四个模型(iABM,KD-Tree,SPBM和CVDM)生成的空域航段。三个目标是扇区边界和交通流交叉点之间的最小距离。通过使用示例空中交通数据证明了所提出模型的性能和效率。实验结果表明,所有方法都有其优点和缺点。 iABM在任务负载平衡方面具有最佳性能,但不能满足凸性约束。 SPBM和CVDM在任务负载平衡方面的表现要比iABM差,但在平均扇区飞行时间上却要好一些,并且它们可以满足凸度约束。基于KD树的模型是最有效的,但由于其代表性存在偏差而无法在给定的目标上执行,因此效果不佳,这也限制了其在运行环境中的使用。为进一步研究SPBM和CVDM在国家空域领域的发展,开发并实施了实时空中交通监控和咨询系统,称为TOP-LAT(实时空中交通的轨迹优化和预测)。 TOP-LAT是一个实时系统,它综合了实时空中交通数据,以测量和分析空域容量,空域安全,空中交通流量和航空排放,使ATM参与者能够及时,准确和可靠地获取有关ATM决策的信息。 TOP-LAT提供了一个ATM环境,用于评估和研究高级ATM概念,例如DAS。本文通过两种提出的DAS模型对澳大利亚空域划分进行了许多实验。在这些实验中,当前和预计的空中交通需求是根据公共统计数据生成的,并且对一些将来的ATM概念(例如,用户首选航迹)进行了原型设计,以研究所提出模型的性能。结果表明,这两种模型在任务负载平衡,更长的飞行扇区时间,更大的扇区边界和交通流交叉点之间的最小距离以及减少的ATC的最大任务负载方面,都优于当前的空域扇区配置。这些实验还表明,这两种模型都具有与其他高级ATM概念兼容的能力。但是,没有一种方法可以满足所有复杂的空中交通管理目标。与空域类型有关的空中交通流量和相关的交通复杂性可以决定动态分区的最佳方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号