首页> 外文OA文献 >Leak rate prediction methods for hermetically sealed devices
【2h】

Leak rate prediction methods for hermetically sealed devices

机译:密封设备的泄漏率预测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hermetic packaging is crucial for enclosing sensitive components such as those found in implantable biomedical devices and MEMS devices. Knowledge of the leak rate of the packaging is also required so that the service lifetime of these devices can be predicted. Determining the leak rate of a hermetically sealed device is typically performed by measuring the leak rate of a tracer gas into said device, then using Graham's law of effusion to determine the leak rate of other gases. Reports from the literature demonstrate that predictions made using this method are not always accurate when predicting the flow rates of not only condensable gases (e.g. water vapour), but also non-condensable gases. Experimental testing of soldered samples with seals like those in hermetically sealed devices confirmed that predictions using Graham's law could be inaccurate. Investigation of Graham's law showed that it may be derived from Knudsen's equation for molecular flow, which assumes completely diffuse reflections of the gas molecules from channel walls, i.e. a tangential momentum accommodation coefficient (TMAC) of 1. A modified version of Graham's law was derived from Smoluchowski's equation, itself a modification to Knudsen's equation that incorporates TMAC. To use this new equation, experimentation and simulation were used to demonstrate that Knudsen number and molecular mass both have an effect on TMAC. Also, over the course of these experiments, a model for flow in the transitional flow regime developed by Cha and McCoy was validated using multiple gases. Finally, the modified version of Graham's law and the relationship between TMAC and molecular mass were tested against the leak rate results from the soldered samples, demonstrating an improvement in accuracy over the original form of Graham's law. This result is of practical significance in the testing of hermetically sealed devices. Furthermore, Cha and McCoy's equation will be of benefit in making flow rate predictions in several flow regimes if channel dimensions are known.
机译:密封包装对于封装敏感组件至关重要,例如在可植入生物医学设备和MEMS设备中发现的那些敏感组件。还需要了解包装的泄漏率,以便可以预测这些设备的使用寿命。确定密闭设备的泄漏率通常是通过测量示踪气体进入所述设备的泄漏率,然后使用格雷厄姆渗流定律确定其他气体的泄漏率来确定的。文献报道表明,使用这种方法进行的预测不仅在预测可凝性气体(例如水蒸气)的流量,而且在预测不可凝性气体的流量时也不总是准确的。像密封的设备一样,对带有密封的焊接样品进行的实验测试证实,使用格雷厄姆定律进行的预测可能不准确。对格雷厄姆定律的研究表明,它可以从克努德森分子流方程推导,该方程假设气体分子从通道壁完全扩散反射,即切向动量调节系数(TMAC)为1。派生了格雷厄姆定律的修正版本。源自Smoluchowski方程,它本身是对包含TMAC的Knudsen方程的修改。为了使用这个新方程,通过实验和仿真证明了克努森数和分子质量都对TMAC有影响。同样,在这些实验过程中,由Cha和McCoy开发的过渡流动状态下的流动模型已使用多种气体进行了验证。最后,针对焊接样品的泄漏率结果,测试了修改版的格雷厄姆定律以及TMAC与分子质量之间的关系,证明了其精度比原始形式的格雷厄姆定律有所提高。该结果在密封设备的测试中具有实际意义。此外,如果通道尺寸已知,Cha和McCoy方程将有助于在几种流态中进行流量预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号