首页> 外文OA文献 >Synthesis and resistive switching properties of nickel oxide nanostructures made via a phase separation approach
【2h】

Synthesis and resistive switching properties of nickel oxide nanostructures made via a phase separation approach

机译:通过相分离法制备的氧化镍纳米结构的合成及电阻转换性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This thesis investigates the synthesis and resistive switching properties of nickel oxide (NiO) nanostructures grown on strontium titanate, SrTiO3 and niobium doped SrTiO3 substrates of (001) orientation a phase separation approach. Pulsed laser deposition of a bismuth nickel oxide (BiNiO3) perovskite precursor is carried out under conditions which induce perovskite decomposition into bismuth oxide and NiO. Post-deposition process conditions are then finetuned to exploit the volatile nature of bismuth oxide which then leaves behind an array of self-assembled NiO nanostructures.Varying synthesis parameters allows us to find the optimum conditions for controlling the morphology and chemical properties. Firstly deposition partial O2 pressures were examined to show the influence on the morphology and phase of the samples. Results show the optimum pressure to be 50 mTorr. Next the temperature was modified. A substantial effect was observed with both crystal shape and inter-particle distance. The 900 °C sample was shown to be the optimum temperature. The influence of laser pulses on volume and nanocrystal shape was then investigated. 5 000 pulses showed the formation of square pyramidal hut shaped structures, 10 000 showed some hut shapes as well as truncated pyramids and 20 000 showed a film-like growth indicating a metastable state of joined hexagonal structures. Finally the effects of annealing conditions were considered. Samples annealed in a vacuum showed round structures composed of Ni2O3. 100 mTorr O2 partial pressure showed NiO phases however the structures were undefined and 1 Torr was found to promote formation of defined nanostructures and NiO(200) phase constituents.In understanding the resistive switching properties of these individual nanostructures conductive– atomic force microscopy was used. The role of the interface as well as the interplay between the nanostructure morphology and resistive switching properties and the governing mechanisms are required in order to create efficient switching devices based on nickel oxide. We find that the nanostructures display prominent extrinsic bipolar switching characteristics in a specific height range (~20-15 nm). Heights lower than this show conductive behaviour and taller heights display a strong rectifying behaviour. The maximum ON/OFF ratio is at ~103 at a read voltage of ~+0.4 V. This ratio is found to decrease with increasing height of the nanostructure. Linear fittings of I-V loops reveal that low and high resistance states follow Ohmic-conduction and Schottky-emission mechanism, respectively. This switching behaviour (dependence on height) is attributed to the modulation of the carrier density at the nanostructure-substrate interface due to the applied electric field.
机译:本文研究了以(001)取向相分离方法在钛酸锶,SrTiO3和掺铌SrTiO3衬底上生长的氧化镍(NiO)纳米结构的合成和电阻转换特性。在诱发钙钛矿分解成氧化铋和NiO的条件下,进行脉冲激光沉积钙钛矿酸铋(BiNiO3)的前驱体。然后微调沉积后的工艺条件,以利用氧化铋的挥发性,然后留下一系列自组装的NiO纳米结构。不同的合成参数使我们能够找到控制形态和化学性质的最佳条件。首先检查沉积的O2分压,以显示对样品形态和相的影响。结果显示最佳压力为50 mTorr。接下来修改温度。在晶体形状和粒子间距离上都观察到实质性影响。 900°C的样品显示为最佳温度。然后研究了激光脉冲对体积和纳米晶体形状的影响。 5 000个脉冲显示出方形金字塔形小屋形结构的形成,1万个显示出一些小屋形状以及截顶的金字塔形,2万个显示出膜状生长,表明连接的六角形结构处于亚稳态。最后考虑了退火条件的影响。在真空中退火的样品显示出由Ni2O3组成的圆形结构。 100 mTorr O2分压显示NiO相,但结构不确定,发现1 Torr促进形成确定的纳米结构和NiO(200)相组成。在理解这些单个纳米结构的电阻切换特性时,使用了导电-原子力显微镜。为了创建基于氧化镍的高效开关器件,需要界面的作用以及纳米结构形态和电阻开关特性以及控制机制之间的相互作用。我们发现,纳米结构在特定的高度范围(〜20-15 nm)内显示出突出的外部双极开关特性。低于该高度的高度显示出导电行为,而高于该高度的高度则显示出强烈的整流行为。在约+0.4 V的读取电压下,最大开/关比为〜103。发现该比随纳米结构高度的增加而降低。 I-V回路的线性拟合表明,低阻态和高阻态分别遵循欧姆传导和肖特基发射机制。这种切换行为(取决于高度)归因于由于施加电场而在纳米结构-基底界面处的载流子密度的调制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号