首页> 外文OA文献 >Fracture analysis of piezoelectric composites using scaled boundary finite element method
【2h】

Fracture analysis of piezoelectric composites using scaled boundary finite element method

机译:压电复合材料断裂的比例边界有限元分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Piezoelectric materials are widely used as sensors, actuators and transducers owing to the intrinsic mechanical and electrical coupling behavior. In most applications, piezoelectric materials are usually layered with substrates or embedded in a host material. Due to the brittleness and low fracture toughness, they have high tendency to develop cracks, especially under complex mechanical, electrical and thermal loads. In piezoelectric composites, interface cracks and interface debonding may be induced by the high stress concentrations occurring as a result of the mismatch of mechanical and electrical properties between different layers. The increasing use of these materials in modern intelligent material systems emphasizes the importance of the fracture analysis of piezoelectric materials. This thesis develops a novel technique based on the scaled boundary finite element method to analyze fracture problems of piezoelectric composites under static, dynamic and thermal loadings. The scaled boundary finite element equations are derived for piezoelectric materials. In statics, a solution procedure based on matrix functions and the real Schur decomposition is used to solve the scaled boundary finite element equations. The singular stress and electric displacement fields around a crack tip are expressed analytically in the radial direction. Consequently, the generalized stress and electric displacement intensity factors are determined directly from the solution.In dynamics, a continued fraction solution for the scaled boundary finite element equation is presented. The dynamic properties are represented by high order stiffness and mass matrices. This allows the use of efficient time-marching algorithms.Under the thermal loadings, the change in temperature field is obtained using the scaled boundary finite element method. The nodal loads due to the temperature change are treated as a non-homogeneous term in the resulting ordinary differential equations. The particular solution for the non-homogeneous term is expressed as integral in the radial direction. This integral is evaluated analytically leading to a semi-analytical solution for the electromechanical behaviour. Numerical examples are presented to verify the proposed technique with the results from the literature and the numerical results obtained using the commercial software ANSYS. The present results highlight the accuracy, simplicity and efficiency of the proposed technique.
机译:由于固有的机械和电气耦合特性,压电材料被广泛用作传感器,执行器和换能器。在大多数应用中,压电材料通常与基板层叠在一起或嵌入基质材料中。由于它们的脆性和低的断裂韧性,它们很容易产生裂纹,特别是在复杂的机械,电气和热负荷下。在压电复合材料中,由于不同层之间的机械和电气特性不匹配而产生的高应力集中可能引起界面裂纹和界面剥离。这些材料在现代智能材料系统中的越来越多的使用强调了压电材料断裂分析的重要性。本文提出了一种基于比例边界有限元法的新技术,以分析压电复合材料在静态,动态和热载荷下的断裂问题。推导了压电材料的比例边界有限元方程。在静态中,使用基于矩阵函数和实际Schur分解的求解程序来求解比例边界有限元方程。裂纹尖端周围的奇异应力和电位移场在径向方向上解析地表示。因此,可以直接从解中确定广义应力和电位移强度因子。在动力学中,提出了比例边界有限元方程的连续分数解。动态特性由高阶刚度和质量矩阵表示。这允许使用有效的时间步长算法。在热负荷下,使用比例边界有限元方法获得温度场的变化。由于温度变化引起的节点载荷在所得的常微分方程中被视为非齐次项。非齐次项的特定解表示为径向方向上的整数。该积分经过分析评估,得出了机电行为的半解析解。给出了数值示例,以利用文献中的结果和使用商业软件ANSYS获得的数值结果来验证所提出的技术。目前的结果突出了所提出技术的准确性,简单性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号