首页> 外文OA文献 >Towards three dimensional all-epitaxial silicon architectures patterned by scanning tunnelling microscopy
【2h】

Towards three dimensional all-epitaxial silicon architectures patterned by scanning tunnelling microscopy

机译:迈向通过扫描隧道显微镜构图的三维全外延硅架构

摘要

This thesis develops a process to realise precise three dimensional architectures for silicon nanoelectronics, patterned by a scanning tunneling microscope (STM). In particular we combine ultra-high vacuum STM-lithography with gaseous phosphine doping and low temperature epitaxial silicon growth to realise vertically offset STMpatterned device layers for the purpose of gating one layer with another.We systematically optimised the formation of each δ -layer component of a stacked device structure. We first demonstrated a maximum carrier density of 2.4×1014cm−2 in single Si:P δ -layers, 20% higher than previously reported. Low growth and incorporation anneal temperatures were required to minimise dopant segregation and prevent P desorption from the surface. We also found that by employing a interrupted double dosing technique we could prevent the formation of dopant precipitates to increase the planar carrier density to 3.6×1014cm−2.For vertically separated δ -layers we found that the activation of subsequent dopant layers was critically impacted by the surface crystallinity of the first encapsulated layer. We thus achieved full activation of Si:P bilayers measuring, 4.4×1014cm−2. For trilayer samples however, the maximum carrier density was limited at 4.3×1014cm−2 by a combination of reduced epitaxial quality, P segregation and deactivating donor pairs.Using the optimised bilayer recipe we then developed a multi-layer STM-patterned fabrication scheme to pattern an epitaxial top-gate above a STM-patterned nanowire. In an initial crossed wire architecture we demonstrated independent electrical contact to nanowires, vertically separated by 45 nm of epitaxial silicon. At 4.2K, the vertical tunnelling resistance between the nanowires was ∼ 167 M Ω, much larger than the fourterminal resistance 80 k Ω of the 30 nm wide nanowire patterned on the low temperature overgrown silicon, and is consistent with previous STM-patterned wires in the literature. By increasing the silicon separation between STM-patterned layers to 120 nm we were able to produce a gating range of 2.6 V, sufficient to demonstrate conduction modulation in another STM-patterned device layer, demonstrating that low temperature grown epitaxial Si can be used as an effective gate dielectric. Finally we used a 100 nm wide Si:P doped top gate to observe stable and reproducible multi-island Coulomb blockade at cryogenic temperatures, in a 3 nm wide phosphorus doped silicon nanowire.These results demonstrate the viability of highly doped, vertically separated epitaxial gates in an all crystalline transistor architecture which show promise for the long-term realisation of monolithic epitaxial silicon circuits and scalable architectures for quantum computing.
机译:本文开发了一种通过扫描隧道显微镜(STM)进行图案化的方法,以实现用于硅纳米电子学的精确三维结构。特别是,我们将超高真空STM光刻技术与气态磷化氢掺杂和低温外延硅生长相结合,以实现垂直偏移的STM图案化器件层,以便将一层与另一层进行门控。我们系统地优化了每个&#0948层的形成堆叠设备结构的组件。我们首先证明了单个Si:Pδ层的最大载流子密度为2.4×1014cm-2,比以前报道的高20%。需要低的生长和结合退火温度,以最大程度地减少掺杂剂的偏析并防止P从表面解吸。我们还发现通过采用间断双剂量技术可以防止掺杂物沉淀的形成,从而将平面载流子密度提高到3.6×1014cm-2。对于垂直分离的δ层,我们发现随后的掺杂剂层的活化受到严重影响第一包封层的表面结晶度。因此,我们实现了尺寸为4.4×1014cm-2的Si:P双层的完全激活。然而,对于三层样品,通过降低外延质量,P偏析和去活供体对的组合,最大载流子密度限制为4.3×1014cm-2,然后使用优化的双层配方,我们开发了多层STM模式的制造方案在STM图案化的纳米线上方图案化外延顶栅。在最初的交叉线架构中,我们展示了与纳米线的独立电接触,纳米线垂直隔开45 nm外延硅。在4.2K时,纳米线之间的垂直隧穿电阻约为167 M&#0937,远大于在低温过度生长的硅上构图的30 nm宽纳米线的四端电阻80 k&#0937,与先前的STM一致文献中的金属丝。通过将STM图案化的层之间的硅间距增加到120 nm,我们能够产生2.6 V的门控范围,足以证明在另一个STM图案化的器件层中的传导调制,表明低温生长的外延Si可以用作硅衬底。有效栅极电介质。最后,我们使用100 nm宽的Si:P掺杂顶栅在3 nm宽的磷掺杂硅纳米线中在低温下观察到稳定且可重现的多岛库仑阻挡,这些结果证明了高掺杂,垂直分隔的外延栅的可行性在全结晶晶体管架构中,它有望长期实现单片外延硅电路和用于量子计算的可扩展架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号