首页> 外文OA文献 >High Performance Control of an Atomic Force Microscope for Faster Image Scanning
【2h】

High Performance Control of an Atomic Force Microscope for Faster Image Scanning

机译:原子力显微镜的高性能控制,可实现更快的图像扫描

摘要

The performance of the atomic force microscope (AFM), a nanoscale imaging tool, is significantly influenced by the dynamics of the piezoelectric tube scanner (PTS). The limitations of the PTS are its nonlinear behavior in the form of hysteresis and creep effects, low mechanical resonance frequency, and cross-coupling between its two axes of motion. The key focus of this dissertation is to mitigate the limitations of the PTS using controllers to increase the scanning speed. Broadly speaking, this thesis reports four significant contributions for improved scanning using AFMs with piezo tube scanners.The first and unique contribution of this thesis is the design and experimental implementation of a model predictive control (MPC) scheme to achieve accurate tracking for improved image quality at high scanning speeds. Close tracking of the reference signal ensures compensation of the creep and hysteresis effects in the PTS. The MPC control scheme is commonly used when tracking a reference trajectory is the primary goal. This capability of MPC controllers has motivated our research to indirectly compensate the creep and hysteresis effects of the PTS to improve the imaging performance of AFMs. The design of this controller is based on an identified single-input single-output (SISO) model of the PTS, and the AFM's improved imaging quality and scanning speed is illustrated for the design using the proposed control scheme. To evaluate the overall performance improvement achieved by the proposed scheme, an experimental comparison of scanned images from the proposed controller and the existing AFM proportional-integral (PI) controller is undertaken, the results of which verify the efficacy of the proposed design.Tube resonance is one of the major limitations for fast image scanning using AFMs. To overcome this, a damping compensator or notch filter introduced with the proposed MPC controller achieves a high closed-loop bandwidth and significant damping, and enables a reference triangular signal to be tracked. This is the second contribution of this dissertation. By using the proposed controller, the vibration effects in scanned images at high scanning speeds are compensated. Comparisons of the performance of the MPC controller and the modified MPC scheme with a damping compensator are presented.Another reason for the poor performance of the PTS for nanopositioning is that any movement in its x- or y-axis direction produces an undesirable motion in the z-direction called the cross-coupling effect. A multi-input multi-output (MIMO) MPC controller is proposed to compensate for the cross-coupling effect and this is the third contribution of this research. The design is based on an identified MIMO model of the PTS that includes the cross-coupling dynamics. Using the proposed controller a significant reduction in the cross-coupling is achieved and the imaging speed is enhanced up to 125 Hz.Also, a barrier in achieving high scanning speeds is the use of the zig-zag raster pattern scanning technique. In this thesis, a high-speed sinusoidal scanning method, i.e., a spiral scanning method, with an improved MIMO MPC scheme with a damping compensator for faster scanning is proposed and this is the final contribution of this research. The spirals produced have particularly narrow-band frequency which changes slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back-and-forth motions of raster scanning. The experimental results show that, using the proposed method, the AFM is able to scan a 6 μm radius image within 1.42 s with a quality better than that obtained using the conventional raster pattern scanning method.
机译:纳米管成像工具原子力显微镜(AFM)的性能受到压电管扫描仪(PTS)动力学的显着影响。 PTS的局限性在于其磁滞和蠕变效应,低机械共振频率以及其两个运动轴之间的交叉耦合形式的非线性行为。本文的重点是利用控制器提高扫描速度来减轻PTS的局限性。从广义上讲,本论文报告了使用压电显微镜与AFM进行扫描改善的四个重要贡献。本论文的第一个独特贡献是模型预测控制(MPC)方案的设计和实验实现,以实现精确跟踪以改善图像质量高扫描速度。紧密跟踪参考信号可确保补偿PTS中的蠕变和磁滞效应。当跟踪参考轨迹是主要目标时,通常使用MPC控制方案。 MPC控制器的这种能力促使我们进行研究,以间接补偿PTS的蠕变和磁滞效应,从而改善AFM的成像性能。该控制器的设计基于PTS的已识别单输入单输出(SISO)模型,并使用所提出的控制方案为该设计说明了AFM改进的成像质量和扫描速度。为了评估所提出的方案所实现的整体性能改进,对来自所提出的控制器和现有AFM比例积分(PI)控制器的扫描图像进行了实验比较,其结果验证了所提出设计的有效性。是使用AFM快速扫描图像的主要限制之一。为了克服这个问题,与提出的MPC控制器一起引入的阻尼补偿器或陷波滤波器实现了高闭环带宽和显着的阻尼,并且能够跟踪参考三角信号。这是本文的第二个贡献。通过使用所提出的控制器,可以补偿高扫描速度下扫描图像中的振动影响。提出了MPC控制器和改进型MPC方案与阻尼补偿器的性能比较。纳米定位PTS性能较差的另一个原因是,其x轴或y轴方向上的任何运动都会在轴上产生不希望的运动。 z方向称为交叉耦合效应。提出了一种多输入多输出(MIMO)MPC控制器来补偿交叉耦合效应,这是本研究的第三项贡献。该设计基于PTS的已识别MIMO模型,其中包括交叉耦合动力学。使用提出的控制器可以显着降低交叉耦合,并且成像速度可以提高到125 Hz。此外,使用锯齿形光栅图形扫描技术是实现高扫描速度的障碍。本文提出了一种高速正弦扫描方法,即一种螺旋扫描方法,该方法具有改进的MIMO MPC方案和阻尼补偿器,可以实现更快的扫描速度,这是本研究的最终贡献。产生的螺旋具有特别窄的频带频率,该频带随时间缓慢变化,从而使扫描仪可以实现改善的跟踪和连续的高速扫描,而不受限于光栅扫描的来回运动。实验结果表明,使用所提出的方法,原子力显微镜能够在1.42 s内扫描6μm半径的图像,其质量优于使用常规光栅图案扫描方法获得的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号