首页> 外文OA文献 >Cooperative coevolutionary mixture of experts : a neuro ensemble approach for automatic decomposition of classification problems
【2h】

Cooperative coevolutionary mixture of experts : a neuro ensemble approach for automatic decomposition of classification problems

机译:合作合作进化专家的混合物:分类问题自动分解的神经集合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial neural networks have been widely used for machine learning and optimization.A neuro ensemble is a collection of neural networks that works cooperatively on a problem. In the literature, it has been shown that by combining several neural networks, the generalization of the overall system could be enhanced over the separate generalization ability of the individuals. Evolutionary computation can be used to search for a suitable architecture and weights for neural networks. When evolutionary computation is used to evolve a neuro ensemble, it is usually known as evolutionary neuro ensemble. In most real-world problems, we either know little about these problems or the problems are too complex to have a clear vision on how to decompose them by hand. Thus, it is usually desirable to have a method to automatically decompose a complex problem into a set of overlapping or non-overlapping sub-problems and assign one or more specialists (i.e. experts, learning machines) to each of these sub-problems. An important feature of neuro ensemble is automatic problem decomposition. Some neuro ensemble methods are able to generate networks, where each individual network is specialized on a unique sub-task such as mapping a subspace of the feature space. In real world problems, this is usually an important feature for a number of reasons including: (1) it provides an understanding of the decomposition nature of a problem; (2) if a problem changes, one can replace the network associated with the sub-space where the change occurs without affecting the overall ensemble; (3) if one network fails, the rest of the ensemble can still function in their sub-spaces; (4) if one learn the structure of one problem, it can potentially be transferred to other similar problems.In this thesis, I focus on classification problems and present a systematic study of anovel evolutionary neuro ensemble approach which I call cooperative coevolutionary mixture of experts (CCME). Cooperative coevolution (CC) is a branch of evolutionary computation where individuals in different populations cooperate to solve a problem and their fitness function is calculated based on their reciprocal interaction. The mixture of expert model (ME) is a neuro ensemble approach which can generate networks that are specialized on different sub-spaces in the feature space. By combining CC and ME, I have a powerful framework whereby it is able to automatically form the experts and train each of them. I show that the CCME method produces competitive results in terms of generalization ability without increasing the computational cost when compared to traditional training approaches. I also propose two different mechanisms for visualizing the resultant decomposition in high-dimensional feature spaces. The first mechanism is a simple one where data are grouped based on the specialization of each expert and a color-map of the data records is visualized. The second mechanism relies on principal component analysis to project the feature space onto lower dimensions, whereby decision boundaries generated by each expert are visualized through convex approximations. I also investigate the regularization effect of learning by forgetting on the proposed CCME. I show that learning by forgetting helps CCME to generate neuro ensembles of low structural complexity while maintaining their generalization abilities.Overall, the thesis presents an evolutionary neuro ensemble method whereby (1) thegenerated ensemble generalizes well; (2) it is able to automatically decompose the classification problem; and (3) it generates networks with small architectures.
机译:人工神经网络已被广泛用于机器学习和优化。神经集合是在问题上协同工作的神经网络的集合。在文献中,已经表明,通过组合多个神经网络,可以增强整个系统的泛化能力,而不是个体具有独立的泛化能力。进化计算可用于搜索神经网络的合适架构和权重。当使用进化计算来进化神经集合时,通常称为进化神经集合。在大多数现实世界中的问题中,我们要么对这些问题了解甚少,要么问题过于复杂,无法对如何手工分解有清晰的认识。因此,通常希望有一种方法可以自动地将复杂问题分解为一组重叠或不重叠的子问题,并为每个子问题分配一个或多个专家(即专家,学习机)。神经集合的一个重要特征是自动问题分解。一些神经集成方法能够生成网络,其中每个单独的网络都专门处理唯一的子任务,例如映射特征空间的子空间。在现实世界中,出于多种原因,这通常是重要的功能,其中包括:(1)可以理解问题的分解性质; (2)如果问题发生变化,则可以替换与发生变化的子空间相关的网络,而不会影响整体集成; (3)如果一个网络发生故障,其余整体仍可以在其子空间中工作; (4)如果了解一个问题的结构,则有可能将其转移到其他类似的问题中。在本文中,我主要研究分类问题,并提出了一种对anovel进化神经集成方法的系统研究,我将其称为专家合作协同进化混合物。 (CCME)。合作协同进化(CC)是进化计算的一个分支,不同种群中的个体合作解决问题,并根据他们的交互作用来计算其适应度函数。专家模型(ME)的混合是一种神经集成方法,可以生成专门针对特征空间中不同子空间的网络。通过将CC和ME结合起来,我拥有了一个强大的框架,该框架可以自动形成专家并对其进行培训。我证明,与传统的训练方法相比,CCME方法在泛化能力方面可产生竞争性结果,而不会增加计算成本。我还提出了两种不同的机制来可视化高维特征空间中的合成分解。第一种机制是一种简单的机制,其中根据每个专家的专业性对数据进行分组,并可视化数据记录的颜色图。第二种机制依靠主成分分析将特征空间投影到较低的维度上,从而通过凸近似将每个专家生成的决策边界可视化。我还通过忘记建议的CCME来研究学习的正则化效果。研究表明,通过遗忘学习可以帮助CCME生成结构复杂度低的神经集成体,同时又保持其泛化能力。总体而言,本文提出了一种进化的神经集成体方法,其中:(1)生成的集成体能够很好地泛化; (2)能够自动分解分类问题; (3)生成具有小型架构的网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号