首页> 外文OA文献 >Local Error Analysis of Discontinuous Galerkin Methods for Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems
【2h】

Local Error Analysis of Discontinuous Galerkin Methods for Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems

机译:对流占优椭圆线性二次最优控制问题的间断Galerkin方法局部误差分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper analyzes the local properties of the symmetric interior penalty upwinddiscontinuous Galerkin (SIPG) method for the numerical solution of optimal control problems governedby linear reaction-advection-diffusion equations with distributed controls. The theoretical andnumerical results presented in this paper show that for advection-dominated problems the convergenceproperties of the SIPG discretization can be superior to the convergence properties of stabilizedfinite element discretizations such as the streamline upwind Petrov Galerkin (SUPG) method. Forexample, we show that for a small diffusion parameter the SIPG method is optimal in the interiorof the domain. This is in sharp contrast to SUPG discretizations, for which it is known that theexistence of boundary layers can pollute the numerical solution of optimal control problems everywhereeven into domains where the solution is smooth and, as a consequence, in general reducesthe convergence rates to only first order. In order to prove the nice convergence properties of theSIPG discretization for optimal control problems, we first improve local error estimates of the SIPGdiscretization for single advection-dominated equations by showing that the size of the numericalboundary layer is controlled not by the mesh size but rather by the size of the diffusion parameter.As a result, for small diffusion, the boundary layers are too “weak” to pollute the SIPG solution intodomains of smoothness in optimal control problems. This favorable property of the SIPG method isdue to the weak treatment of boundary conditions, which is natural for discontinuous Galerkin methods,while for SUPG methods strong imposition of boundary conditions is more conventional. Theimportance of the weak treatment of boundary conditions for the solution of advection dominatedoptimal control problems with distributed controls is also supported by our numerical results.
机译:为了解决由线性反应-对流-扩散方程控制的最优控制问题的数值解,本文分析了对称内罚上风不连续伽勒金(SIPG)方法的局部性质。本文提出的理论和数值结果表明,对于对流占优的问题,SIPG离散化的收敛性可以优于稳定有限元离散化的收敛性,例如流线型迎风Petrov Galerkin(SUPG)方法。例如,我们表明,对于较小的扩散参数,SIPG方法在域内部是最佳的。这与SUPG离散化形成鲜明对比,SUPG离散化众所周知,边界层的存在会污染最佳控制问题的数值解,甚至在解决方案平滑的域中也是如此,因此,通常将收敛速度降低到仅第一订购。为了证明SIPG离散化对于最优控制问题的良好收敛性,我们首先通过显示数值边界层的大小不受网格大小控制,而由网格大小控制,从而改善了单对流主导方程的SIPG离散化的局部误差估计。结果,对于较小的扩散,边界层太“弱”,以至于在最佳控制问题中将SIPG解决方案污染到平滑度域中。 SIPG方法的这种有利特性是由于对边界条件的处理不善,这对于不连续的Galerkin方法是很自然的,而对于SUPG方法,更强的施加边界条件是常规的。我们的数值结果也证明了对边界条件的弱处理对于解决对流占优的分布式控制问题的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号