首页> 外文OA文献 >Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled Systems
【2h】

Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled Systems

机译:复杂的等离子纳米结构:对称破坏和耦合系统。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metallic nanostructures support resonant oscillations of their conduction band electrons called localized surface plasmon resonances. Plasmons couple efficiently to light and have enabled a new class of technology for the manipulation of light at the nanoscale. Nanostructures that support plasmon resonances have the potential for a wide range of applications such as enhanced optical spectroscopy techniques for chemical- and bio-sensing, cancer diagnosis and therapy, metamaterials, and energy harvesting. As the field of plasmonics has progressed, these applications have become more sophisticated, requiring increasingly complex nanostructures. For example, coupled nanostructures of two or more nanoparticles are used extensively in plasmon-enhanced spectroscopy techniques because they exhibit extremely large optical field enhancements. Asymmetric nanostructures, such as nanocups (metallic semishells), have been shown to support magnetic modes that could be used in metamaterials applications. This class of complex plasmonic nanostructures holds great potential for both the observation of new physical phenomena and practical applications. This thesis will focus on the fabrication and characterization of several examples of these complex nanostructures using darkfield spectroscopy. The plasmon modes of a dimer consisting of two nanoshells are investigated in both the separated and conductively overlapping regimes and are interpreted using the plasmon hybridization model. Next, coupled nanoclusters of seven particles arranged in a hexagonal pattern are studied. It is found that these nanoclusters support Fano resonances due to the coupling and interference of degenerate subradiant and superradiant plasmon modes. These structures are found to have an extremely high sensitivity to the local dielectric environment, making them attractive for biosensing applications. Variations on the nanocluster geometry are then explored, and it is observed that by adding more particles and varying their sizes, the lineshape of the Fano resonance can be precisely engineered. The underlying subradiant and superradiant modes are then analyzed using cathodoluminescence imaging and spectroscopy. Finally the plasmon modes of asymmetric nanostructures are measured. Nanoeggs (nanoshells with an offset core) and nanocups (metallic semishells) are fabricated by electron beam induced ablation, and their plasmon modes are measured. The plasmon modes of nanocups are studied in detail, and nanocups are found to support both electric and magnetic plasmons.
机译:金属纳米结构支持其导带电子的共振振荡,称为局部表面等离子体激元共振。等离子体能有效地与光耦合,并为纳米级的光操纵提供了一种新的技术。支持等离子体激元共振的纳米结构具有广泛的应用潜力,例如用于化学和生物传感的增强型光谱技术,癌症诊断和治疗,超材料以及能量收集。随着等离子技术领域的发展,这些应用变得越来越复杂,需要越来越复杂的纳米结构。例如,两个或多个纳米粒子的耦合纳米结构在等离激元增强光谱技术中被广泛使用,因为它们表现出极大的光场增强。已经显示出不对称的纳米结构,例如纳米杯(金属半壳),可以支持可用于超材料应用的磁模式。这类复杂的等离子纳米结构在观察新的物理现象和实际应用方面都具有巨大的潜力。本论文将重点研究利用暗场光谱法制备和表征这些复杂纳米结构的几个实例。由两个纳米壳组成的二聚体的等离激元模式在分离和导电重叠的情况下都进行了研究,并使用等离激元杂交模型进行了解释。接下来,研究了以六边形图案排列的七个粒子的耦合纳米团簇。发现这些纳米簇由于简并的亚辐射和超辐射等离子体激元模式的耦合和干扰而支持Fano共振。发现这些结构对本地介电环境具有极高的灵敏度,使其对生物传感应用具有吸引力。然后研究了纳米团簇几何形状的变化,并且观察到通过添加更多的粒子并改变其大小,可以精确地设计Fano共振的线形。然后使用阴极发光成像和光谱分析潜在的亚辐射和超辐射模式。最后,测量了不对称纳米结构的等离激元模式。通过电子束诱导烧蚀制备纳米蛋(具有偏移核的纳米壳)和纳米杯(金属半壳),并测量其等离子体激元模式。详细研究了纳米杯的等离激元模式,发现纳米杯同时支持电和磁等离激元。

著录项

  • 作者

    Lassiter J. Britt;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号