首页> 外文OA文献 >Studying the Interactions of Biomacromolecular Assemblies with Surfaces Using the Microcantilever Sensor and Quartz Crystal Microbalance
【2h】

Studying the Interactions of Biomacromolecular Assemblies with Surfaces Using the Microcantilever Sensor and Quartz Crystal Microbalance

机译:使用微悬臂梁传感器和石英晶体微天平研究生物大分子组件与表面的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis uses surface sensitive tools to characterize the effect of a solid surface on immobilized biomacromolecules. This includes understanding how the surface can change the affinity of these macromolecules to small molecules compared to bulk studies. Two classes of immobilized biomacromolecules, the supported lipid bilayer (SLB) and the Lac repressor protein (LacI), are characterized using microcantilever sensors and quartz crystal microbalance with dissipation (QCM-D). The first part of this thesis reports the use of microcantilever beams, an ultrasensitive sensor for measuring the surface free energy changes on a substrate induced by molecular adsorptions, to probe the interaction between a solid surface and a phospholipid bilayer. This sensing method integrates two well-developed techniques: solid-supported lipid bilayers (SLBs) and the microcantilever (MC) sensors. Studying the adsorption free energy of lipid bilayers on a solid surface allows better characterizing of the formation and stability of SLBs. Microcantilever converts the Gibbs free energy change taking place on its surface into a mechanical deformation. As molecules physisorb or chemisorb onto the surface of the microcantilevers, the microcantilevers bend, either due to induced compressive or tensile stresses, which result from the surface free energy change. By monitoring the deflection values of the microcantilevers, the real-time surface free energy change during the SLB formation can be detected. This thesis has led to the development of a novel biosensor--lipid membrane coated microcantilevers--to detect the adsorption, insertion, aggregation and solubilizing effect of membrane-active substances, such as surfactants and peptides, on the phospholipid membranes. To better characterize the surface free energy, SLBs doped with charged lipids or cholesterol are shown to alter the surface free energy. We can predict this change in surface free energy using a thermodynamic model. Application of this membrane-coated cantilever is put into use for detecting how amphiphilic molecules interact with SLBs, as well as for probing the abrupt conformational change of SLBs during a temperature induced phase-transition. This study systematically demonstrates various usage aspects of microcantilever to characterize the SLBs, and how this technique may advance the biophysical knowledge of the lipid membrane, one of the essential building blocks of life. The second part of this thesis reports the use of both microcantilever sensors and QCM-D to measure the adsorption free energy and mass of a model protein, the Lac repressor (LacI), and compare how a modified T334C mutant that includes a cysteine group to orient the protein on the gold surface through a covalent sulfur bonds retains its binding capabilities over that of wild type LacI. The main challenge of this work is to unravel how the adsorption of biomacromolecules at the solid/liquid interface leads to surface free energy changes and ultimately changes the stress of the underlying solid surface (the cantilever). The uses of microcantilever sensors and QCM to probe the interactions that take place on SLBs and surface-bound proteins have the advantage of being a sensitive, real-time, and label-free technique.
机译:本文使用表面敏感工具来表征固体表面对固定化生物大分子的影响。与批量研究相比,这包括了解表面如何改变这些大分子与小分子的亲和力。使用微悬臂梁传感器和带耗散的石英晶体微量天平(QCM-D)对两类固定化的生物大分子,即支持的脂质双层(SLB)和Lac阻遏蛋白(LacI)进行了表征。本文的第一部分报道了微悬臂梁的使用,这是一种超灵敏的传感器,用于测量分子吸附引起的基质表面自由能的变化,以探测固体表面与磷脂双层之间的相互作用。这种传感方法集成了两种先进技术:固体支持的脂质双层(SLB)和微悬臂梁(MC)传感器。研究脂质双层在固体表面上的吸附自由能可以更好地表征SLB的形成和稳定性。微悬臂梁将其表面上发生的吉布斯自由能变化转换为机械变形。当分子物理吸附或化学吸附到微悬臂梁的表面上时,由于表面自由能变化引起的压缩应力或拉伸应力,微悬臂梁弯曲。通过监视微悬臂梁的挠度值,可以检测到SLB形成过程中的实时表面自由能变化。本论文导致了新型生物传感器的开发-脂质膜包被的微悬臂梁-用于检测膜活性物质(例如表面活性剂和肽)在磷脂膜上的吸附,插入,聚集和增溶作用。为了更好地表征表面自由能,掺有带电脂质或胆固醇的SLBs可以改变表面自由能。我们可以使用热力学模型预测表面自由能的这种变化。这种膜包被的悬臂的应用已用于检测两亲分子如何与SLBs相互作用,以及在温度诱导的相变过程中探测SLBs的突然构象变化。这项研究系统地证明了微悬臂梁用于表征SLB的各种用途,以及该技术如何提高脂质膜的生物物理知识,脂质膜是生命的基本组成部分之一。本文的第二部分报告了微悬臂梁传感器和QCM-D的使用,以测量模型蛋白Lac阻遏物(LacI)的吸附自由能和质量,并比较包含半胱氨酸基团的修饰T334C突变体与通过共价硫键对金表面的蛋白质进行定向,可以保持其与野生型LacI的结合能力。这项工作的主要挑战是揭示生物大分子在固/液界面处的吸附如何导致表面自由能变化并最终改变下面的固体表面(悬臂)的应力。使用微悬臂梁传感器和QCM探测在SLB和表面结合的蛋白质上发生的相互作用的优势在于它是一种灵敏,实时且无标签的技术。

著录项

  • 作者

    Liu Kai-Wei;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号