首页> 外文OA文献 >Drogue Parachute Computational Structural and Fluid Mechanics Analysis with Isogeometric Discretization
【2h】

Drogue Parachute Computational Structural and Fluid Mechanics Analysis with Isogeometric Discretization

机译:等角离散化的Drogue降落伞计算结构和流体力学分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the Orion spacecraft’s return, at higher altitudes drogue parachutes will be used for deceleration. These parachutes are made of ribbons and have 24 gores, with 52 ribbons in each gore, where a gore is the slice of the parachute between two radial reinforcement cables extending from the parachute apex to the skirt. There are hundreds of gaps that the flow goes through, and there are also three wider gaps created by removing ribbons. Computational analysis can help reduce the number of costly drop tests in comprehensive evaluation of the parachute performance. Reliable analysis requires accurate computation of the parachute fluid-structure interaction (FSI) between the drogue and the compressible flow it is subjected to. The FSI computation is challenging because of the geometric and flow complexities and requires first creation of a starting parachute shape and flow field. This is a process that by itself is rather challenging, and that is what we are focusing on here. In our structural and fluid mechanics computations, for spatial discretization, we use isogeometric discretization with quadratic NURBS basis functions. This gives us a parachute shape that is smoother than what we get from a typical finite element discretization. In the flow analysis, we use the NURBS basis functions in the context of the compressible-flow Space-Time SUPG (ST SUPG) method. The combination of the ST framework, NURBS basis functions, and the SUPG stabilization assures superior computational accuracy.
机译:在猎户座飞船返回期间,在较高的高度,将使用伞形降落伞进行减速。这些降落伞是由带子制成的,有24个孔,每个孔中有52条带子,其中的降落伞是从降落伞的顶点延伸到裙部的两条径向增强电缆之间的降落伞的切片。流有数百个间隙,并且通过去除色带还创建了三个更宽的间隙。计算分析可以帮助减少降落伞性能综合评估中昂贵的跌落测试的次数。要进行可靠的分析,就需要准确计算降落伞及其所经历的可压缩流之间的降落伞流体-结构相互作用(FSI)。由于几何和流动的复杂性,FSI计算具有挑战性,并且需要首先创建起始降落伞的形状和流场。这本身就是一个相当具有挑战性的过程,这就是我们在此重点关注的过程。在我们的结构和流体力学计算中,对于空间离散化,我们使用具有二次NURBS基函数的等几何离散化。这使我们的降落伞形状比从典型的有限元离散化获得的降落伞形状更平滑。在流分析中,我们在可压缩流时空SUPG(ST SUPG)方法的上下文中使用NURBS基函数。 ST框架,NURBS基本功能和SUPG稳定性的组合确保了卓越的计算精度。

著录项

  • 作者

    Hartmann Aaron;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号