...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization
【24h】

Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization

机译:可压缩流动的几何孔隙度建模和航天器降落伞计算,具有异诊离散化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

One of the challenges in computational fluid-structure interaction (FSI) analysis of spacecraft parachutes is the geometric porosity, a design feature created by the hundreds of gaps and slits that the flow goes through. Because FSI analysis with resolved geometric porosity would be exceedingly time-consuming, accurate geometric-porosity modeling becomes essential. The geometric-porosity model introduced earlier in conjunction with the space-time FSI method enabled successful computational analysis and design studies of the Orion spacecraft parachutes in the incompressible-flow regime. Recently, porosity models and ST computational methods were introduced, in the context of finite element discretization, for compressible-flow aerodynamics of parachutes with geometric porosity. The key new component of the ST computational framework was the compressible-flow ST slip interface method, introduced in conjunction with the compressible-flow ST SUPG method. Here, we integrate these porosity models and ST computational methods with isogeometric discretization. We use quadratic NURBS basis functions in the computations reported. This gives us a parachute shape that is smoother than what we get from a typical finite element discretization. In the flow analysis, the combination of the ST framework, NURBS basis functions, and the SUPG stabilization assures superior computational accuracy. The computations we present for a drogue parachute show the effectiveness of the porosity models, ST computational methods, and the integration with isogeometric discretization.
机译:计算流体 - 结构相互作用(FSI)分析的挑战之一是几何孔隙度,由数百个间隙产生的设计特征,并将流动通过的狭缝。由于具有解决的几何孔隙度的FSI分析非常耗时,所以精确的几何孔隙度建模变得必不可少。与空时FSI方法一起推出的几何孔隙度模型使得能够成功计算分析和设计研究在不可压缩流动状态下的猎户座航天器降落伞的计算分析和设计研究。最近,在有限元离散化的背景下引入了孔隙率模型和ST计算方法,用于几何孔隙度的降落伞的可压缩流动空气动力学。 ST计算框架的关键新组件是Compressible-Flow ST SLIP接口方法,与压缩 - 流量ST SUPG方法一起引入。在这里,我们将这些孔隙率模型和ST计算方法集成,具有异诊离散化。我们在报告的计算中使用二次NURBS基本函数。这给了我们一个降落伞形状,比我们从典型的有限元离散化所获得的更平滑。在流程分析中,ST框架,NURBS基本功能和SUPG稳定的组合可确保卓越的计算精度。我们为滴点降落伞提供的计算显示了孔隙型模型,ST计算方法的有效性和与异常离散化的集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号