首页> 外文OA文献 >Finite element methods for viscoelastic fluid flow simulations: Formulations and applications
【2h】

Finite element methods for viscoelastic fluid flow simulations: Formulations and applications

机译:粘弹性流体流动模拟的有限元方法:配方和应用

摘要

Complex fluid flow simulations are important in several industrial and biological applications, e.g., polymer processing, ink-jet printing, and human as well as artificial organs, and they pose several numerical challenges. These flows are governed by the conservation of mass, momentum, and conformation equations. In this thesis, two different new formulations to simulate these flows are presented and validated with benchmark problems.This thesis introduces the four-field Galerkin/Least-Squares ( GLS4) stabilized finite element method, which is suited for large-scale computations, because it yields linear systems that can be solved easily with iterative solvers, and use equal-order interpolation functions that increase implementation efficiency on distributed-memory clusters. The governing equations are converted into a set of first-order partial differential equations by introducing the velocity gradient as an additional unknown. Thereby four unknown fields---pressure, velocity, conformation, and velocity gradient---are computed using linear interpolation functions. The mesh-convergence of GLS4 is comparable to the state-of-the-art DEVSS-TG/SUPG method and yields accurate results at lower computational cost.The log-conformation formulation, which alleviates the long-standing high Weissenberg number problem associated with the viscoelastic fluid flows, replaces the conformation tensor unknown by its logarithm (Fattal and Kupferman 2004). This guarantees the positive-definiteness of the tensor, and helps in capturing sharp elastic stress boundary layers. Previous implementations are based on loosely coupled solution procedures; here a simpler yet very effective approach to implement the log-conformation formulation in a fully-coupled DEVSS-type code is presented.As an application example, the dynamics of a liquid drop, immersed in a liquid medium under shear flow, is studied. The interface is tracked while preserving the volume of the drop by using the isochoric domain deformation method, where the mesh is treated as an incompressible elastic pseudo-solid (Xie et al. 2007). All governing equations are solved in a coupled fashion using the DEVSS-TG/SUPG finite element method. The critical conditions after which the drop will continue to deform until breakup and the influence of inertia and viscoelasticity on the drop deformation and on the critical conditions are predicted first using a 2-D formulation, which is then extended to 3-D.
机译:复杂的流体流动模拟在多种工业和生物应用中很重要,例如,聚合物加工,喷墨印刷以及人体和人造器官,它们带来了一些数值方面的挑战。这些流量受质量,动量和构象方程守恒的支配。本文提出了两种不同的模拟这些流动的新公式,并用基准问题进行了验证。本文介绍了适用于大规模计算的四场Gale​​rkin /最小二乘(GLS4)稳定有限元方法,因为它产生了可以使用迭代求解器轻松求解的线性系统,并使用等阶插值函数提高了分布式内存集群的实现效率。通过引入速度梯度作为附加未知量,将控制方程转换为一组一阶偏微分方程。因此,使用线性插值函数计算了四个未知字段-压力,速度,构造和速度梯度-。 GLS4的网格收敛可与最新的DEVSS-TG / SUPG方法相媲美,并以较低的计算成本获得准确的结果。对数符合公式,缓解了长期以来与之相关的高Weissenberg数问题粘弹性流体流动,用对数代替未知的构象张量(Fattal和Kupferman 2004)。这保证了张量的正定性,并有助于捕获尖锐的弹性应力边界层。先前的实现基于松耦合的解决方案过程;本文提出了一种在完全耦合的DEVSS型代码中实现对数构象公式的更简单但非常有效的方法。作为一个应用实例,研究了在剪切流下浸入液体介质中的液滴的动力学。通过使用等速域变形方法来跟踪界面,同时保留液滴的体积,其中网格被视为不可压缩的弹性拟固体(Xie等,2007)。使用DEVSS-TG / SUPG有限元方法以耦合方式求解所有控制方程。液滴将继续变形直到破裂的临界条件,以及惯性和粘弹性对液滴变形和临界条件的影响,首先使用2-D公式预测,然后将其扩展到3-D。

著录项

  • 作者

    Coronado Oscar M.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号