首页> 外文OA文献 >Tree-Width and the Computational Complexity of MAP Approximations in Bayesian Networks
【2h】

Tree-Width and the Computational Complexity of MAP Approximations in Bayesian Networks

机译:贝叶斯网络中树的宽度和MAP逼近的计算复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of finding the most probable explanation to a designated set of variables given partial evidence (the MAP problem) is a notoriously intractable problem in Bayesian networks, both to compute exactly and to approximate. It is known, both from theoretical considerations and from practical experience, that low tree-width is typically an essential prerequisite to efficient exact computations in Bayesian networks. In this paper we investigate whether the same holds for approximating MAP. We define four notions of approximating MAP (by value, structure, rank, and expectation) and argue that all of them are intractable in general. We prove that efficient value-approximations, structure-approximations, and rank-approximations of MAP instances with high tree-width will violate the Exponential Time Hypothesis. In contrast, we show that MAP can sometimes be efficiently expectation-approximated, even in instances with high tree-width, if the most probable explanation has a high probability. We introduce the complexity class FERT, analogous to the class FPT, to capture this notion of fixed-parameter expectation-approximability. We suggest a road-map to future research that yields fixed-parameter tractable results for expectation-approximate MAP, even in graphs with high tree-width.
机译:在给定部分证据的情况下,找到对一组指定变量的最可能解释的问题(MAP问题)是贝叶斯网络中一个难以解决的难题,无论是精确计算还是近似计算。从理论考虑和实践经验都知道,低树宽通常是在贝叶斯网络中高效精确计算的必要先决条件。在本文中,我们研究了近似MAP是否成立。我们定义了四个近似MAP的概念(按值,结构,等级和期望),并认为它们在总体上都是难以理解的。我们证明具有高树宽的MAP实例的有效值近似,结构近似和秩近似将违反指数时间假设。相反,我们表明,即使最有可能的解释具有很高的概率,即使在树宽较大的情况下,MAP有时也可以有效地期望近似。我们引入了类似于FPT类的复杂性类FERT,以捕获固定参数期望近似性的这一概念。我们提出了一个未来研究的路线图,即使在具有高树宽的图中,也可以为期望近似的MAP产生固定参数的可处理结果。

著录项

  • 作者

    Kwisthout J.H.P.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号