首页> 外文OA文献 >PBCRC2135: Optimising plant biosecurity surveillance protocols for remote sensing using unmanned aerial systems
【2h】

PBCRC2135: Optimising plant biosecurity surveillance protocols for remote sensing using unmanned aerial systems

机译:PBCRC2135:使用无人机系统优化用于遥感的植物生物安全监控协议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advancements in technologies of high-resolution, thermal, multispectral and hyperspectral sensors for remote sensing, along with the affordability and availability of small unmanned aerial systems (UAS) in the marketplace provide a unique opportunity to evaluate the use of these technologies for detecting invasive species across different scales, as illustrated in Figure 1. This project aims to provide end-users with the value of these technologies in guiding decisions and adopting systems based on capabilities to detect species on varying host plants and in diverse environments. Specific and measurable benefits will include reductions in sampling time or changes in efficiency, cost-savings, more effective use of resources, and potential reductions in harvest losses and control costs.ududThe aim of this project is to use predictive models combined with advanced detection systems to increase sampling efficiency and improve first detection rates.ududThe project objectives are as follows:udud1.Modelling region-wide environmental changes to identify criteria for selecting high-risk surveillance areas and compare these predictors to current selection methods deployed by biosecurity personnel;udud2.Prioritise sampling times and areas within targeted areas to direct surveillance efforts and increase rate of first detection using higher-resolution surveillance technologies and unique spectral signatures;udud3.Evaluate utility of higher-resolution cameras and robotic technologies on multi-rotor UASs to categorise and/or collect target pests on different plant structures for identification by trained diagnosticians; andudud4.Synthesise modelling and improved UAS technologies to demonstrate a practical application for surveillance of high priority plant pests in commercial crops.ududThe project has begun compiling a national database encompassing information on past incursions of stripe rust throughout grain growing regions of Australia. The database includes information on the location and timing of past incursions as well as environmental data including minimum and maximum temperatures associated with each stripe rust occurrence. This database will be used to help develop predictive models that are used to determine the best time and place to sample stripe rust in order to ensure accurate and early disease identification and to minimise the likelihood of yield reduction as a result of stripe rust infections. This will help identify potential surveillance areas for further investigation by UAS equipped with advanced remote sensing technologies, namely, high-resolution, thermal, multispectral, and hyperspectral sensors. ududThe authors would like to acknowledge the support of the Australian Government’s Cooperative Research Centres Program and the Australian Research Centre for Aerospace Automation at QUT.
机译:用于遥感的高分辨率,热,多光谱和高光谱传感器技术的最新进展,以及市场上小型无人机系统(UAS)的可承受性和可用性,为评估使用这些技术检测侵入性的技术提供了独特的机会如图1所示。该项目旨在为最终用户提供这些技术的价值,以指导决策和采用基于检测宿主植物和不同环境中的物种的能力的系统。具体的和可衡量的收益将包括减少采样时间或效率变化,节省成本,更有效地利用资源以及潜在地减少收获损失和控制成本。 ud ud该项目的目的是将预测模型与先进的检测系统可提高采样效率并提高首次检测率。 ud ud项目目标如下: ud ud1。对整个区域的环境变化进行建模,以确定用于选择高风险监视区域的标准,并将这些预测变量与生物安全人员当前采用的选择方法进行比较; ud ud2。优先安排目标区域内的采样时间和区域,以指导监视工作并使用高分辨率监视技术和独特的光谱特征来提高首次检测的速度; ud ud3。评估多旋翼无人机系统上高分辨率照相机和机器人技术的实用性,以分类和/或收集不同植物结构上的目标害虫,以供受过训练的诊断人员进行鉴定;和 ud ud4。综合建模和改进的UAS技术可证明其在监控商业作物中的高优先级植物害虫方面的实际应用。 ud ud该项目已开始建立一个全国数据库,其中包含有关澳大利亚谷物种植地区过去的条锈病入侵信息。该数据库包括有关过去入侵的地点和时间的信息,以及包括与每个条锈发生有关的最低和最高温度的环境数据。该数据库将用于帮助开发预测模型,用于确定条纹锈病采样的最佳时间和地点,以确保准确和早期的疾病识别,并最大程度地减少条纹锈病感染导致产量降低的可能性。这将有助于识别潜在的监视区域,以供配备先进的遥感技术(即高分辨率,热,多光谱和高光谱传感器)的UAS进一步调查。 ud ud作者要感谢澳大利亚政府的合作研究中心计划和昆士兰科技大学的澳大利亚航空航天自动化研究中心的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号