首页> 外文OA文献 >Application of image processing techniques for frog call classification
【2h】

Application of image processing techniques for frog call classification

机译:图像处理技术在蛙叫分类中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).
机译:青蛙因其指示环境变化的有效性而受到越来越多的关注。因此,监测和评估青蛙非常重要。随着传感器技术的发展,已经收集了大量音频数据(包括青蛙叫声),需要对其进行分析。在使用短时傅立叶变换将音频数据转换为其频谱图表示形式之后,对该表示形式的视觉检查促使我们使用图像处理技术来分析音频数据。将声事件检测(AED)方法应用于频谱图,首先检测声事件,然后从中提取出山脊。然后使用支持向量机分类器将三个特征集(梅尔频率倒谱系数(MFCC),AED特征集和脊特征集)用于青蛙呼叫分类。选择了在澳大利亚昆士兰州广泛分布的15种青蛙物种来评估该方法。实验结果表明,脊特征集的平均分类准确率达到74.73%,优于MFCC(38.99%)和AED特征集(67.78%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号