首页> 外文OA文献 >Short utterance variance modelling and utterance partitioning for PLDA speaker verification
【2h】

Short utterance variance modelling and utterance partitioning for PLDA speaker verification

机译:用于PLDA说话人验证的简短话语方差建模和话语划分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper analyses the short utterance probabilistic linear discriminant analysis (PLDA) speaker verification with utterance partitioning and short utterance variance (SUV) modelling approaches. Experimental studies have found that instead of using single long-utterance as enrolment data, if long enrolled utterance is partitioned into multiple short utterances and average of short utterance i-vectors is used as enrolled data, that improves the Gaussian PLDA (GPLDA) speaker verification. This is because short utterance i-vectors have speaker, session and utterance variations, and utterance-partitioning approach compensates the utterance variation. Subsequently, SUV-PLDA is also studied with utterance partitioning approach, and utterance partitioning-based SUV-GPLDA system shows relative improvement of 9% and 16% in EER for NIST 2008 and NIST 2010 truncated 10sec-10sec evaluation condition as utterance partitioning approach compensates the utterance variation and SUV modelling approach compensates the mismatch between full-length development data and short-length evaluation data.
机译:本文使用话语划分和短话语方差(SUV)建模方法分析了短话语概率线性判别分析(PLDA)说话人验证。实验研究发现,不是将单个长话语作为注册数据,而是将长时话语划分为多个短话语,并将短话语i-vector的平均值用作注册数据,从而提高了高斯PLDA(GPLDA)说话者的验证能力。这是因为短发声i向量具有说话人,会话和发声变化,并且发声分割方法可以补偿发声变化。随后,还对SUV-PLDA进行了话语分割方法研究,基于话语分割的SUV-GPLDA系统在NIST 2008和NIST 2010的10秒到10秒截断评估条件下,EER分别提高了9%和16%,因为话语分割方法可以补偿话语变化和SUV建模方法补偿了全长开发数据和短时评估数据之间的不匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号