首页> 外文OA文献 >Novel non-linear elastic structural analysis with generalised transverse element loads using a refined finite element
【2h】

Novel non-linear elastic structural analysis with generalised transverse element loads using a refined finite element

机译:新型非线性弹性结构分析,使用精细有限元进行广义横向单元载荷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.
机译:在结构框架的有限元建模中,外部载荷(例如风载荷,静载荷和施加载荷)通常沿单元而不是仅在节点上作用。常规地,当元件承受这些一般的横向元件载荷时,它们通常通过集总或恒定载荷方法转换成作用在元件端部的节点力。另外,对于经受一阶和二阶弹性行为的元素,钢结构非常容易发生,这一点尤为重要。尤其是薄壁钢结构时,矮小的单元截面通常对非弹性行为至关重要。从这个意义上讲,沿单元的单元载荷效应的精确的一阶和二阶弹性位移解至关重要,但是,只要不考虑平衡条件,就不能单独使用数值节点或一致载荷方法来模拟。有限元公式化,尤其会不可避免地损害钢结构的结构安全性。因此,可以将其视为非线性处理单元载荷的一种独特的单元载荷方法。如果基于复杂的非线性单元刚度公式,以精确的位移解为目标来模拟单元上的一阶和二阶弹性行为,则必须将大量规定的刚度矩阵用于过多的特定横向单元加载模式遇到。为了克服这一缺点,本文提出了一种数值技术,将横向单元载荷包括在非线性刚度公式中,而没有大量规定的刚度矩阵,并且能够预测涉及一阶单元载荷作用的结构响应。以及横向载荷和单元中轴向力之间的二阶耦合效应。本文表明,可以将叠加原理应用于单元荷载作用的广义刚度公式,这样,刚度矩阵的形式相对于特定的载荷模式保持不变,但仅具有载荷(单元)的大小。刚度公式中需要调整载荷系数),随后可以通过非线性求解程序更新单元载荷系数的大小来抵消对单元载荷的非线性影响。原则上,单元载荷分布在中跨转换为单个载荷大小,以提供初始扰动,以由于其横向单元载荷而触发构件弯曲效果。反过来,这种方法牺牲了单元载荷分布的影响,除了中跨。因此,可以预见的是,载荷-挠度行为可能不如跨度时的精确,但事实证明,其偏差仍然很小。这种新颖性允许对具有任意横向载荷模式的单个高阶单元进行非常有用的广义刚度公式化。此外,本文的另一个重要意义在于将节点响应(系统分析)转移到节点响应和元素响应(复杂的元素表示)上。对于常规的有限元方法(例如立方元素),所有精确解都只能在节点上找到。这意味着无法在一个元件内确保准确而可靠的结构安全性,从而阻碍了工程应用。本文的结果通过分析稳定性函数研究以及独立研究人员在几个简单框架上报告的数值结果进行了验证。

著录项

  • 作者

    Iu C.K.; Bradford M.A.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号