首页> 外文OA文献 >Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen
【2h】

Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen

机译:废气中的低碳燃料和商品化学品–一种系统的方法,可用于了解模拟乙酸原中的能量代谢

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.
机译:使用产乙酸细菌进行的气体发酵为从大量廉价的C1原料(包括工业废气,合成气,重整的甲烷或甲醇)可持续生产低碳燃料和商品化学品提供了一条有希望的途径。自产乙醇梭菌(Clostridium autoethanogenum)是一种典型的气体发酵产乙酸菌,可生产燃料乙醇和2,3-丁二醇(尼龙和橡胶的前体)。乙醛已经被用于大规模的工业发酵中,它们无处不在,并且在全球碳循环中起着举足轻重的作用。尽管如此,当在C1气体中生长时,它们仍被认为生活在热力学的边缘,并且潜在的能量限制使燃料和化学药品的商业生产面临重大挑战。我们已经开发了一个系统的平台来研究产乙酸的能量代谢,此处通过对比异养和自养代谢的实验来举例说明。该平台由完整的组学技术构建而成,并辅以遗传工具,并辅以人工策划的基因组规模数学模型。这些工具结合在一起,可以设计和开发新的,高能效的途径和菌株,用于通过C1气体发酵生产化学品和高级燃料。作为平台的证明,我们研究了果糖上的异养型生长与气体上的自养型生长,证明了Rnf配合物和Nfn配合物在使用Wood-Ljungdahl途径维持生长中的作用。发现丙酮酸羧激酶控制糖异生的限速步骤,并且鉴定了一种新的专门化的3-磷酸甘油醛脱氢酶,其潜在地通过减少糖异生消耗的ATP量来增强合成代谢能力。通过突变菌株的构建证实了该结果。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号