首页> 外文OA文献 >Remaining useful life prediction of rotating equipment using covariate-based hazard models : Industry applications
【2h】

Remaining useful life prediction of rotating equipment using covariate-based hazard models : Industry applications

机译:使用基于协变量的风险模型预测旋转设备的剩余使用寿命:行业应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to estimate the expected (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, (PHM) and (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.
机译:估计预期(RUL)的能力对于降低维护成本,运营停机时间和安全隐患至关重要。在大多数行业中,可靠性分析基于(RCM)和寿命分布模型。在这些模型中,资产的寿命是使用故障时间数据估算的。但是,由于固定的基于时间的替换和少量的相同资产,在实践中通常难以获得统计上足够的故障时间数据。当除了故障时间数据外还可以使用状态指示器数据时,(CBM)是传统可靠性模型的另一种替代方法。基于协变量的风险建模是CBM方法之一。有许多基于协变量的风险模型;但是,很少有研究使用各种条件指标和数据可用性来评估这些模型在资产寿命预测中的性能。本文回顾了两个基于协变量的风险模型(PHM)和(PCM)。为了评估这些模型的性能,将预期的RUL与实际的RUL进行了比较。结果表明,两种模型在RUL预测中均取得了令人信服的良好结果。然而,PCM具有较小的绝对预测误差。此外,在条件数据的突然变化中,PHM与PCM相比显示出过度平滑的趋势。此外,案例研究表明,在小样本量的情况下,PCM不会受到偏见。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号