首页> 外文OA文献 >Spectroscopic studies of nano-structures of AI and Fe phases, bauxite and their thermally activated products
【2h】

Spectroscopic studies of nano-structures of AI and Fe phases, bauxite and their thermally activated products

机译:铝和铁相,铝土矿及其热活化产物的纳米结构的光谱研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is made as it is submitted as a sum of published papers by the candidate. Aluminium hydroxides including gibbsite, boehmite and diaspore, are the major components, while iron hydroxides/oxides and kaolinite are the major impurities in bauxite. The dehydroxylation pathways during thermal activation of bauxite have been debated for decades. Phase transformation during thermal activation or calcination of bauxite to achieve high yields of alumina has been an important goal for the refining industry. This study deals with natural and synthetic aluminium and iron hydroxides using vibrational spectroscopy in conjunction with X-ray diffraction and electron microscopy, followed by the characterisation of the phase transformation in activated bauxite. In the Raman spectra, gibbsite shows four bands at 3617, 3522, 3433 and 3364 cm-1, and bayerite shows seven bands at 3664, 3652, 3552, 3542, 3450, 3438 and 3420 cm-1 in the hydroxyl stretching region. Five bands at 3445, 3363, 3226, 3119 and 2936 cm-1 for diaspore and four at 3371, 3220, 3085 and 2989 cm-1 for boehmite are present. The far infrared spectrum of boehmite resembles that of diaspore in the 300-400 cm-1 region. Boehmite has two characteristic bands at 366 and 323 cm-1 while diaspore has five at 354, 331, 250, 199 and 158 cm-1. The far infrared spectrum of gibbsite resembles that of bayerite in the 230-300 cm-1 region. Gibbsite shows three characteristic bands at 371, 279 and 246 cm-1 whereas bayerite shows six at 383, 345, 326, 296, 252 and 62 cm-1. The far infrared spectra are in-harmony with the FT-Raman spectra, allowing the study and differentiation of the stretching of AlO4 units to characterize these four alumina phases. The surface properties of kaolinite and gibbsite are studied using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). The FTIR-PAS spectra of kaolinite are recorded at mirror velocities of 0.05, 0.1, and 0.2 cm s-1, and compared to the gibbsite spectra recorded at mirror velocity of 0.2 cm s-1. It is found that the hydroxyl surface spectra are a function of depth. For the FTIR spectroscopy of thermal dehydroxylation of goethite to form hematite, the intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite, in particular the migration of excess hydroxyl units from goethite to hematite. Data from the band component analysis of FT-IR spectra indicate that the hydroxyl units mainly affect the a- plane in goethite and the equivalent c- plane in hematite. A larger amount of non-stoichiometric hydroxyl unit is found to be associated with a higher aluminium substitution. A shift to a higher wavenumber of bending and hydroxyl stretching vibrations is attributed to the effects of aluminium substitution associated with non-stoichiometric hydroxyl units on the a-b plane relative to the b-c plane of goethite. The dehydroxylation pathways of both the aluminium hydroxides and the impurities are intensively studied. Gibbsite completely decomposed at 250 °C, followed by boehmite and kaolinite at 500 °C. No phase transformations were observed for hematite, anatase, rutile or quartz up to 800 °C. Small amounts of gibbsite transformed to boehmite but the majority transformed to chi (?) alumina, a disordered transition alumina phase, after dehydroxylation at 250 °C. The dehydroxylation pathways of crystalline gibbsite follow the orders: (a) gibbsite (250 °C) to boehmite (250-450 °C) to gamma alumina (?) (500-800 °C); or (b) gibbsite (250 °C) to chi alumina (?) (250-800 °C) to chi (?) + kappa alumina (?) (700-800 °C). Boehmite completely altered to gamma alumina (?), while kaolinite altered to metakaolinite at 500 °C. The vibrational spectroscopy including FT-IR and FT-Raman, is a rapid, accurate and non-destructive technique in characterising both single and mixed mineral phases. In particular, the vibrational spectroscopy has shown its advantages over other techniques in terms of its sensitivity to hydroxyl groups. Future work on the simulation of bauxite dehydroxylation with emphasis on the studies of transition aluminas is proposed. The application of the advanced technique synchrotron x-ray spectroscopy, in addition to those techniques used in the present study, is recommended.
机译:本论文是由候选人作为已发表论文的总和提交的。铝酸铝,勃姆石和水铝石是氢氧化铝的主要成分,而铝土矿中的主要杂质是氢氧化铁/氧化物和高岭石。铝土矿热活化过程中的脱羟基途径已有数十年的历史。铝土矿热活化或煅烧过程中的相变以实现高氧化铝产量一直是精炼行业的重要目标。这项研究使用振动光谱结合X射线衍射和电子显微镜研究天然和合成的铝和铁的氢氧化物,然后表征活性铝土矿中的相变。在拉曼光谱中,三水铝石在羟基拉伸区域在3617、3522、3433和3364 cm-1处显示四个谱带,而三羟铝石在3664、3652、3552、3542、3450、3438和3420 cm-1处显示七个谱带。透水孢子存在3条带,分别为3445、3363、3226、3119和2936 cm-1,勃姆石存在4条带,分别为3371、3220、3085和2989 cm-1。勃姆石的远红外光谱类似于在300-400 cm-1区域中的水辉石。勃姆石在366和323 cm-1具有两个特征带,而渗铝在354、331、250、199和158 cm-1具有五个特征带。三水铝石的远红外光谱类似于在230-300 cm-1区域中的三羟铝石的远红外光谱。菱镁矿在371、279和246 cm-1处显示三个特征带,而三钠铝石在383、345、326、296、252和62 cm-1处显示六个特征带。远红外光谱与FT拉曼光谱不一致,可以研究和区分AlO4单元的拉伸来表征这四个氧化铝相。使用傅里叶变换红外光声光谱法(FTIR-PAS)研究了高岭石和三水铝石的表面性质。高岭石的FTIR-PAS光谱在镜面速度为0.05、0.1和0.2 cm s-1时记录,并与在镜面速度为0.2 cm s-1时记录的三水铝石光谱进行比较。发现羟基表面光谱是深度的函数。对于针铁矿热脱羟基形成赤铁矿的FTIR光谱,随着针铁矿脱羟基程度的增加,羟基拉伸和弯曲振动的强度降低。红外吸收带清楚地显示了针铁矿和赤铁矿之间的相变,特别是多余的羟基单元从针铁矿到赤铁矿的迁移。 FT-IR谱带分析的数据表明,羟基单元主要影响针铁矿中的a平面和赤铁矿中的等效c平面。发现大量的非化学计量的羟基单元与较高的铝取代有关。向弯曲和羟基拉伸振动的更高波数的转变归因于与针铁矿的a-b平面上的a-b平面上的非化学计量羟基单元相关的铝取代效应。深入研究了氢氧化铝和杂质的脱羟基途径。菱铁矿在250°C时完全分解,然后在500°C时勃姆石和高岭石完全分解。高达800°C的赤铁矿,锐钛矿,金红石或石英均未观察到相变。在250°C脱羟基后,少量的三水铝石转变为勃姆石,但大部分转变为无序过渡氧化铝相(χ)氧化铝。结晶三水铝石的脱羟基途径遵循以下顺序:(a)三水铝石(<250°C)到勃姆石(250-450°C)到γ氧化铝(?)(500-800°C);或(b)将三水铝石(<250°C)转化为Chi氧化铝(?)(250-800°C)到Chi(?)+ Kappa氧化铝(?)(700-800°C)。在500°C时,勃姆石完全变成了γ-氧化铝(α),而高岭石变成了偏高岭石。包括FT-IR和FT-Raman在内的振动光谱学是一种快速,准确且无损的技术,可表征单一和混合矿物相。特别地,振动光谱在对羟基的敏感性方面已经显示出其优于其他技术的优势。提出了铝土矿脱羟基模拟的未来工作,重点是过渡氧化铝的研究。除了在本研究中使用的那些技术之外,还建议应用先进技术的同步加速器X射线光谱法。

著录项

  • 作者

    Ruan Huada;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号