首页> 外文OA文献 >User behaviour modelling in a multi-dimensional environment for personalization and recommendation
【2h】

User behaviour modelling in a multi-dimensional environment for personalization and recommendation

机译:在多维环境中进行用户行为建模以进行个性化和推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.
机译:从用户的角度来看,在线处理信息过载是一个巨大的挑战,特别是当网站数量由于电子商务和其他相关活动的增长而迅速增长时。基于用户需求的个性化是解决信息超载问题的关键。个性化方法有助于识别用户可能会喜欢的相关信息。用户配置文件和对象配置文件是个性化系统的重要元素。在创建用户和对象配置文件时,大多数现有方法都采用基于矢量或矩阵模型的二维相似性方法,以查找用户之间和对象间的相似性。此外,为了向用户推荐相似的对象,个性化系统使用用户-用户,项目-项目和用户-项目相似性度量。在大多数情况下,基于矢量或矩阵方法的相似性度量(例如Euclidian,Manhattan,余弦和许多其他度量)用于查找相似性。 Web日志是高维数据集,由多个用户,多个搜索组成,每个属性都有很多属性。二维数据分析方法通常可能会忽略用户和项目之间可能存在的潜在关系。与其他研究相比,本文利用张量(即高维数据模型)来建立用户和对象的配置文件,并找到用户-用户和用户-项目之间的相互关系。为了创建一种改进的个性化Web系统,本文提出利用张量数据模型的分解因子构建三种类型的配置文件:个人用户,组用户和对象配置文件。提出了一种混合推荐方法,该方法利用组概要文件(构成协作过滤方法的基础)和对象概要文件(构成基于内容的方法的基础)与各个用户概要文件(构成基于模型的方法的基础)相结合提出有效的建议。提出了一种基于张量的聚类方法,该方法利用流行的张量分解技术(例如PARAFAC,Tucker和HOSVD)的结果对相似实例进行分组。从张量分解后获得的分量矩阵中提取的最高维度值代表了显示用户最高兴趣的个人用户资料。通过基于张量分解值对相似用户进行聚类,可以构建一个显示相似用户及其最高兴趣的组概要文件。组概要文件由从群集用户进行搜索得出的最高关联规则(包含各种唯一的对象组合)表示。创建对象配置文件以表示基于相似特征的特性聚类的相似对象。根据用户的类别(已知,匿名或网站的频繁访问者),任何配置文件或它们的组合都可用于进行个性化推荐。还提出了一种排序算法,该算法利用个性化信息对建议进行排序和排序。根据从真实汽车网站上收集的数据对提出的方法进行评估。实证分析证实了所提出的方法所提出的建议优于基于二维数据分析方法的其他协作过滤和基于内容的建议方法的有效性。

著录项

  • 作者

    Rawat Rakesh;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号