首页> 外文OA文献 >Machine prognostics based on health state estimation using SVM
【2h】

Machine prognostics based on health state estimation using SVM

机译:基于支持向量机的健康状态估计的机器预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to accurately predict the remaining useful life of machine components is critical for continuous operations in machines which can also improve productivity and enhance system safety. In condition-based maintenance (CBM), effective diagnostics and prognostics are important aspects of CBM which provide sufficient time for maintenance engineers to schedule a repair and acquire replacement components before the components finally fail. All machine components have certain characteristics of failure patterns and are subjected to degradation processes in real environments. This paper describes a technique for accurate assessment of the remnant life of machines based on prior expert knowledge embedded in closed loop prognostics systems. The technique uses Support Vector Machines (SVM) for classification of faults and evaluation of health for six stages of bearing degradation. To validate the feasibility of the proposed model, several fault historical data from High Pressure Liquefied Natural Gas (LNG) pumps were analysed to obtain their failure patterns. The results obtained were very encouraging and the prediction closely matched the real life particularly at the end of term of the bearings.
机译:准确预测机器组件的剩余使用寿命的能力对于机器中的连续运行至关重要,这也可以提高生产率并增强系统安全性。在基于状态的维护(CBM)中,有效的诊断和预测方法是CBM的重要方面,可为维护工程师提供足够的时间安排维修时间并在组件最终出现故障之前获取更换组件。所有机器组件都具有故障模式的某些特征,并且在实际环境中会经历退化过程。本文介绍了一种基于闭环预测系统中嵌入的现有专家知识的,准确评估机器剩余寿命的技术。该技术使用支持向量机(SVM)对轴承的六个阶段进行故障分类和健康评估。为了验证该模型的可行性,分析了高压液化天然气(LNG)泵的一些故障历史数据,以获取其故障模式。获得的结果非常令人鼓舞,并且该预测与现实生活密切相关,尤其是在轴承使用期末。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号