首页> 外文OA文献 >Onboard orbit determination using GPS measurements for low Earth orbit satellites
【2h】

Onboard orbit determination using GPS measurements for low Earth orbit satellites

机译:使用GPS测量确定低地球轨道卫星的机载轨道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in spaceborne GPS technology have shown significant advantages in many aspects over conventional technologies. For instance, spaceborne GPS can realize autonomous orbit determination with significant savings in spacecraft life cycle, in power, and in mass. At present, the onboard orbit determination in real time or near-real time can typically achieve 3D orbital accuracy of metres to tens metres with Kalman filtering process, but 21st century space engineering requires onboard orbit accuracy of better than 5 metres, and even sub-metre for some space applications. The research focuses on the development of GPS-based autonomous orbit determination techniques for spacecraft. Contributions are made to the field of GPS-based orbit determination in the following five areas: ududududTechniques to simplify the orbital dynamical models for onboard processing have been developed in order to reduce the computional burden while retaining full model accuracy. The Earth gravity acceleration approximation method was established to replace the traditional recursive acceleration computations. Results have demonstrated that with the computation burden for a 55× spherical harmonic gravity model, we achieve the accuracy of a 7070× model. Efforts were made for the simplification of solar & lunar ephemerides, atmosphere density model and orbit integration. All these techniques together enable a more accurate orbit integrator to operate onboard. ududududEfficient algorithms for onboard GPS measurement outlier detection and measurement improvement have been developed. In addition, a closed-form single point position method was implemented to provide an initial orbit solution without any a priori information. ududududThe third important contribution was made to the development of sliding-window short-arc orbit filtering techniques for onboard processing. With respect to the existing Kalman recursive filtering, the short-arc method is more stable because more measurements are used. On the other hand, the short-arc method requires less accurate orbit dynamical model information compared to the long-arc method, thus it is suitable for onboard processing. Our results have demonstrated that by using the 1 ~ 2 revolutions of LEO code GPS data we can achieve an orbit accuracy of 1 ~ 2 metres. Sliding-window techniques provide sub-metre level orbit determination solutions with 5~20 minutes delay. ududududA software platform for the GPS orbit determination studies has been established. Methods of orbit determination in near-real time have been developed and tested. The software system includes orbit dynamical modelling, GPS data processing, orbit filtering and result analysis modules, providing an effective technical basis for further studies. ududududFurthermore a ground-based near-real time orbit determination system has been established for FedSat, Australia's first satellite in 30 years. The system generates 10-metre level orbit solution with half-day latency on an operational basis. This system has supported the scientific missions of FedSat such as Ka-band tracking and GPS atmosphere studies within the Cooperative Research Centre for Satellite System (CRCSS) community. Though it is different from the onboard orbit determination, it provides important test-bed for the techniques described in previous section. ududududThis thesis focuses on the onboard orbit determination techniques that were discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination algorithms were successfully validated using real onboard GPS data collected from Topex/Poseidon, CHAMP and SAC-C satellites.
机译:星载GPS技术的最新进展已在许多方面显示出优于常规技术的显着优势。例如,星载GPS可以实现自主的轨道确定,并显着节省航天器的生命周期,功率和质量。目前,通过卡尔曼滤波过程,实时或近实时的机载轨道确定通常可以达到3D到几米的3D轨道精度,但是21世纪的太空工程要求机载轨道精度必须超过5米,甚至低于某些空间应用的电表。该研究的重点是发展基于GPS的航天器自主轨道确定技术。在以下五个领域对基于GPS的轨道确定领域做出了贡献: ud ud ud ud为简化机载处理的轨道动力学模型而开发的技术,旨在减轻计算负担,同时又保持完整的模型精度。建立了地球重力加速度的近似方法来代替传统的递归加速度计算。结果表明,在55×球谐重力模型的计算负担下,我们达到了7070×模型的精度。努力简化太阳和月球星历,大气密度模型和轨道整合。所有这些技术共同使更精确的轨道积分器能够在船上运行。 ud ud ud ud已经开发了用于车载GPS测量离群值检测和测量改进的高效算法。此外,采用封闭形式的单点定位方法来提供初始轨道解,而无需任何先验信息。 ud ud ud ud第三项重要贡献是开发了用于机载处理的滑窗短弧轨道过滤技术。关于现有的卡尔曼递归滤波,短弧方法更稳定,因为使用了更多的测量值。另一方面,与长弧方法相比,短弧方法所需的轨道动力学模型信息更不准确,因此适合于机载处理。我们的结果表明,通过使用LEO码GPS数据的1〜2转,我们可以获得1〜2米的轨道精度。滑动窗口技术提供了5至20分钟延迟的亚米级轨道确定解决方案。 ud ud ud ud已经建立了用于GPS轨道确定研究的软件平台。已经开发并测试了近实时确定轨道的方法。该软件系统包括轨道动力学建模,GPS数据处理,轨道过滤和结果分析模块,为进一步研究提供了有效的技术基础。此外,还为澳大利亚30年以来的第一颗卫星FedSat建立了地面近实时轨道确定系统。该系统在运行的基础上产生半天延迟的10米级轨道解决方案。该系统支持FedSat的科学任务,例如卫星系统合作研究中心(CRCSS)社区中的Ka波段跟踪和GPS大气研究。尽管它与机载轨道确定方法不同,但它为上一节中介绍的技术提供了重要的试验台。 ud ud ud ud本论文重点讨论了第2章至第6章中讨论的机载轨道确定技术。所提出的机载轨道确定算法已使用从Topex / Poseidon,CHAMP和SAC- C卫星。

著录项

  • 作者

    Zhou Ning;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号