首页> 外文OA文献 >A sequential Monte Carlo approach to the sequential design for discriminating between rival continuous data models
【2h】

A sequential Monte Carlo approach to the sequential design for discriminating between rival continuous data models

机译:顺序设计的顺序蒙特卡洛方法,用于区分竞争对手的连续数据模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
机译:在这里,我们介绍了贝叶斯顺序设计的顺序蒙特卡洛方法,用于模型不确定性的合并。通过开发和实施两个模型歧视工具来证明该方法。相互信息和完全分离,但是如果一个实验目标不同,也可以更普遍地应用它。对每个竞争模型(并行)运行顺序蒙特卡洛算法,并在给定数据的情况下方便地估算(每个模型的)边际可能性,该边际可能性可用于模型比较和效用函数评估。与完整的马尔可夫链蒙特卡洛方法相比,此方法的主要优点是它几乎不需要问题特定的调整,并且在计算上也很有效。这项研究的动机是在药物开发和化学工程中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号