首页> 外文OA文献 >Analysis and detection of cognitive load and frustration in drivers' speech
【2h】

Analysis and detection of cognitive load and frustration in drivers' speech

机译:驾驶员语音中的认知负荷和沮丧感的分析和检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactionsudwith a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitiveudtask/emotion classification is investigated. A fusion ofudGMM/SVM classifiers yields an accuracy of 94.3% in cognitiveudtask and 81.3% in emotion classification.
机译:非驾驶相关的认知负荷和情绪状态的变化可能会影响驾驶员控制车辆的能力并引入驾驶错误。驾驶员中可靠的认知负荷和情绪检测的可用性将有利于主动安全系统和其他智能车载界面的设计。在这项研究中,分析了68位受试者在市区行驶时产生的语音。特别关注的是两个辅助认知任务中的语音产生差异,与副驾驶员的交互 ud和自动语音对话系统(SDS)的调用以及在SDS交互过程中的两种情绪状态-中性/负性。发现许多语音参数在认知/情绪类别之间变化。研究了基于倒频谱和基于生产的特征对自动认知任务/情绪分类的适用性。 udGMM / SVM分类器的融合产生的认知 udtask准确性为94.3%,情感分类的准确性为81.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号