首页> 外文OA文献 >Efficient Agent-Based Models for Non-Genomic Evolution
【2h】

Efficient Agent-Based Models for Non-Genomic Evolution

机译:高效的基于代理的非基因组进化模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modelling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modelling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation's fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisms that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.
机译:对由原始蛋白质的聚集体组成的动力学系统进行建模对于涉及早期进化结构和生命起源的天文生物学领域至关重要。不幸的是,传统的非多主体方法要么需要简化的模型,要么很难收敛到足够的解决方案。本文展示了如何通过基于实用程序的多代理系统对蛋白质聚集进行建模来解决这些不足。在这种方法中,每种试剂控制着分配给该试剂的一组蛋白质的特性。这些特性中的某些特性决定了系统的动力学特性,例如某些蛋白质连接或分裂其他蛋白质的能力,而其他特性则决定了聚集体作为有活力的原始细胞的适应性。我们表明,在广泛的起始条件下,存在允许蛋白质聚集达到较高总体适应度的机制。此外,通过使用与整个全局实用程序保持一致的特定于代理程序的实用程序,我们可以通过减少50倍的学习步骤来得出这些结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号