首页> 外文OA文献 >Probability friends-of-friends (PFOF) group finder : performance study and observational data applications on photometric surveys.
【2h】

Probability friends-of-friends (PFOF) group finder : performance study and observational data applications on photometric surveys.

机译:概率好友比较(PFOF)组查找器:性能研究和光度测量中的观察数据应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In tandem with observational data sets, we utilize realistic mock catalogs, based on a semi-analytic galaxy formation model, constructed specifically for Pan-STARRS1 Medium Deep Surveys to assess the performance of the Probability Friends-of-Friends (PFOF) group finder, and aim to develop a grouping optimization method applicable to surveys like Pan-STARRS1. Producing mock PFOF group catalogs under a variety of photometric redshift accuracies ($sigma _{Delta z/(1+z_s)}$), we find that catalog purities and completenesses from "good" ($sigma _{Delta z/(1+z_s)} sim$ 0.01) to "poor" ($sigma _{Delta z/(1+z_s)} sim$ 0.07) photo-zs gradually degrade from 77% and 70% to 52% and 47%, respectively. A "subset optimization" approach is developed by using spectroscopic-redshift group data from the target field to train the group finder for application to that field and demonstrated using zCOSMOS groups for PFOF searches within PS1 Medium Deep Field04 (PS1MD04) and DEEP2 EGS groups in PS1MD07. With four data sets spanning the photo-z accuracy range from 0.01 to 0.06, we find purities and completenesses agree with their mock analogs. Further tests are performed via matches to X-ray clusters. We find PFOF groups match ~85% of X-ray clusters identified in COSMOS and PS1MD04, lending additional support to the reliability of the detection algorithm. In the end, we demonstrate, by separating red and blue group galaxies in the EGS and PS1MD07 group catalogs, that the algorithm is not biased with respect to specifically recovering galaxies by color. The analyses suggest the PFOF algorithm shows great promise as a reliable group finder for photometric galaxy surveys of varying depth and coverage.
机译:我们结合观测数据集,利用了基于半解析星系形成模型的逼真的模拟目录,该模型是专门为Pan-STARRS1中深度调查构建的,用于评估“概率之友”(PFOF)分组查找器的性能,旨在开发适用于Pan-STARRS1等调查的分组优化方法。根据各种光度红移精度($ sigma _ { Delta z /(1 + z_s)} $)制作模拟PFOF组目录,我们发现目录的纯度和完整性来自“ good”($ sigma _ { Delta z /(1 + z_s)} sim $ 0.01)变为“较差”($ sigma _ { Delta z /(1 + z_s)} sim $ 0.07)photo-zs从77%和70%逐渐降低到分别为52%和47%。通过使用来自目标场的光谱红移组数据来训练将组搜索器应用于该场的“子集优化”方法,并使用zCOSMOS组在PS1中深场04(PS1MD04)和DEEP2 EGS组中进行PFOF搜索进行了演示。 PS1MD07。通过四个数据集,其范围在photo-z精度范围从0.01到0.06,我们发现其纯度和完整性与它们的模拟类似物一致。通过匹配X射线束进行进一步的测试。我们发现PFOF组与COSMOS和PS1MD04中识别的X射线簇的约85%匹配,从而为检测算法的可靠性提供了额外的支持。最后,我们通过将EGS和PS1MD07组目录中的红色和蓝色组星系分开,证明了该算法在按颜色专门恢复星系方面没有偏见。分析表明,PFOF算法作为用于变化深度和覆盖范围的光度星系调查的可靠组发现者,显示出巨大的希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号